This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A009252 E.g.f. exp(x*tan(x)) (even powers only). 6
 1, 2, 20, 456, 18192, 1111840, 96035136, 11101474944, 1651123634432, 306656507699712, 69472549405824000, 18838618322988648448, 6019938761233443262464, 2237523930630521828745216 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Vaclav Kotesovec, Table of n, a(n) for n = 0..238 FORMULA a(n)=sum(k=1..n, (binomial(2*n,k)*sum(j=k..2*n-k, binomial(j-1,k-1)*j!*(-1)^(n+j)*2^(2*n-k-j)*stirling2(2*n-k,j)))), n>0, a(0)=1. [Vladimir Kruchinin, Jun 06 2011] a(n) ~ n^(2*n-1/4) * 2^(4*n+1/4) * exp(2*sqrt(2*n)-2*n-1/2) / Pi^(2*n) * (1 - (Pi^2-1)/(12*sqrt(2*n))). - Vaclav Kotesovec, Jan 20 2015 MATHEMATICA Exp[ Tan[ x ]*x ] (* Even Part *) With[{nn=40}, Take[CoefficientList[Series[Exp[Tan[x]*x], {x, 0, nn}], x]*Range[0, nn]!, {1, -1, 2}]] (* Vaclav Kotesovec, Jan 20 2015 *) PROG (Maxima) a(n):=sum((binomial(2*n, k)*sum(binomial(j-1, k-1)*j!*(-1)^(n+j)*2^(2*n-k-j)*stirling2(2*n-k, j), j, k, 2*n-k)), k, 1, n); [Vladimir Kruchinin, Jun 06 2011] CROSSREFS Cf. A024263. Sequence in context: A012533 A009160 A188811 * A210901 A274572 A292396 Adjacent sequences:  A009249 A009250 A009251 * A009253 A009254 A009255 KEYWORD nonn AUTHOR EXTENSIONS Extended and signs tested Mar 15 1997 by Olivier Gérard. STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 15 20:00 EST 2019. Contains 330000 sequences. (Running on oeis4.)