login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A009250
E.g.f. exp(tan(x)*sin(x)) (even powers only).
0
1, 2, 16, 302, 10456, 564842, 43545676, 4528889822, 610057244176, 103185102761042, 21388501828276756, 5328050642207280902, 1569616725144816645016, 539516138161105990193402
OFFSET
0,2
FORMULA
a(n) = 2*Sum(k=1..2*n, Sum(t=0..n-k, binomial(2*n,2*t+k)*((Sum(j=k..2*n-2*t-k, binomial(j-1,k-1)*j!*Stirling2(2*n-2*t-k,j)*(-1)^(n+j)*2^(-2*t-k+2*n-j)))*Sum(i=0..k/2, (2*i-k)^(2*t+k)*binomial(k,i)*(-1)^(k-i))))/(2^k*k!)), n>0, a(0)=1. - Vladimir Kruchinin, Jun 30 2011
a(n) ~ (2*n)! * 2^(2*n-1/2) * exp(1/Pi + 4*sqrt(n/Pi)) / (n^(3/4) * Pi^(2*n+3/4)) * (1 - (5*Pi^2-2) / (12*Pi^(3/2)*sqrt(n))). - Vaclav Kotesovec, Jan 24 2015
MATHEMATICA
nn = 20; Table[(CoefficientList[Series[E^(Sin[x]*Tan[x]), {x, 0, 2*nn}], x] * Range[0, 2*nn]!)[[n]], {n, 1, 2*nn+1, 2}] (* Vaclav Kotesovec, Jan 24 2015 *)
PROG
(Maxima)
a(n):=if n=0 then 1 else 2*sum(sum(binomial(2*n, 2*t+k)*((sum(binomial(j-1, k-1)*j!*stirling2(2*n-2*t-k, j)*(-1)^(n+j)*2^(-2*t-k+2*n-j), j, k, 2*n-2*t-k))*sum((2*i-k)^(2*t+k)*binomial(k, i)*(-1)^(k-i), i, 0, k/2)), t, 0, n-k)/(2^k*k!), k, 1, 2*n); /* Vladimir Kruchinin, Jun 30 2011 */
CROSSREFS
Sequence in context: A259647 A188985 A362734 * A335618 A174487 A140051
KEYWORD
nonn
AUTHOR
EXTENSIONS
Extended and signs tested by Olivier Gérard, Mar 15 1997
STATUS
approved