login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

E.g.f. exp(tan(x)*sin(x)) (even powers only).
0

%I #18 Jan 27 2018 06:31:50

%S 1,2,16,302,10456,564842,43545676,4528889822,610057244176,

%T 103185102761042,21388501828276756,5328050642207280902,

%U 1569616725144816645016,539516138161105990193402

%N E.g.f. exp(tan(x)*sin(x)) (even powers only).

%F a(n) = 2*Sum(k=1..2*n, Sum(t=0..n-k, binomial(2*n,2*t+k)*((Sum(j=k..2*n-2*t-k, binomial(j-1,k-1)*j!*Stirling2(2*n-2*t-k,j)*(-1)^(n+j)*2^(-2*t-k+2*n-j)))*Sum(i=0..k/2, (2*i-k)^(2*t+k)*binomial(k,i)*(-1)^(k-i))))/(2^k*k!)), n>0, a(0)=1. - _Vladimir Kruchinin_, Jun 30 2011

%F a(n) ~ (2*n)! * 2^(2*n-1/2) * exp(1/Pi + 4*sqrt(n/Pi)) / (n^(3/4) * Pi^(2*n+3/4)) * (1 - (5*Pi^2-2) / (12*Pi^(3/2)*sqrt(n))). - _Vaclav Kotesovec_, Jan 24 2015

%t nn = 20; Table[(CoefficientList[Series[E^(Sin[x]*Tan[x]), {x, 0, 2*nn}], x] * Range[0, 2*nn]!)[[n]], {n, 1, 2*nn+1, 2}] (* _Vaclav Kotesovec_, Jan 24 2015 *)

%o (Maxima)

%o a(n):=if n=0 then 1 else 2*sum(sum(binomial(2*n,2*t+k)*((sum(binomial(j-1,k-1)*j!*stirling2(2*n-2*t-k,j)*(-1)^(n+j)*2^(-2*t-k+2*n-j),j,k,2*n-2*t-k))*sum((2*i-k)^(2*t+k)*binomial(k,i)*(-1)^(k-i),i,0,k/2)),t,0,n-k)/(2^k*k!),k,1,2*n); /* _Vladimir Kruchinin_, Jun 30 2011 */

%K nonn

%O 0,2

%A _R. H. Hardin_

%E Extended and signs tested by _Olivier Gérard_, Mar 15 1997