login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A166356
Expansion of e.g.f. 1 + x*arctanh(x), even powers only.
5
1, 2, 8, 144, 5760, 403200, 43545600, 6706022400, 1394852659200, 376610217984000, 128047474114560000, 53523844179886080000, 26976017466662584320000, 16131658445064225423360000, 11292160911544957796352000000, 9146650338351415815045120000000
OFFSET
0,2
COMMENTS
For n>0, (4*n-1)*a(n) corresponds to the number of random walk labelings of the friendship graph F_n (i.e., the one-point union of n triangles). - Sela Fried, May 20 2023
LINKS
Sela Fried and Toufik Mansour, Further results on random walk labelings, arXiv:2305.09971 [math.CO], 2023.
FORMULA
E.g.f.: 1 + x*arctanh(x) has expansion 1, 0, 2, 0, 8, 0, 144, ...
a(n) = (2n-1)! + (2n-2)! for n > 0; a(0) = 1.
a(n) -2*n*(2*n-3)*a(n-1) = 0. - R. J. Mathar, Nov 24 2012
G.f.: 1 + x*G(0), where G(k) = 1 + 1/(1 - (k+2)*x/( (k+2)*x + (k+1)/((2*k+1)*(2*k+2))/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jul 08 2013
From Amiram Eldar, Jan 02 2022: (Start)
Sum_{n>=0} 1/a(n) = 2 - 1/e = 1 + A068996.
Sum_{n>=0} (-1)^n/a(n) = 2 - cos(1) - sin(1) = 2 - A143623. (End)
MATHEMATICA
a[0] = 1; a[n_] := (2*n - 1)! + (2*n - 2)!; Array[a, 14, 0] (* Amiram Eldar, Jan 02 2022 *)
With[{nn=40}, Take[CoefficientList[Series[1+x ArcTanh[x], {x, 0, nn}], x] Range[0, nn]!, {1, -1, 2}]] (* Harvey P. Dale, Apr 15 2024 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Oct 12 2009
STATUS
approved