OFFSET
0,4
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..1274 (rows 0..49)
FORMULA
Number triangle T(n,k) = [k<=n]*A166356((n-k)/2)*C(n,k)*(1+(-1)^(n-k))/2.
EXAMPLE
Triangle begins
1;
0, 1;
2, 0, 1;
0, 6, 0, 1;
8, 0, 12, 0, 1;
0, 40, 0, 20, 0, 1;
144, 0, 120, 0, 30, 0, 1;
0, 1008, 0, 280, 0, 42, 0, 1;
5760, 0, 4032, 0, 560, 0, 56, 0, 1;
0, 51840, 0, 12096, 0, 1008, 0, 72, 0, 1;
403200, 0, 259200, 0, 30240, 0, 1680, 0, 90, 0, 1;
MATHEMATICA
(* The function RiordanArray is defined in A256893. *)
RiordanArray[1 + # ArcTanh[#]&, #&, 11, True] // Flatten (* Jean-François Alcover, Jul 19 2019 *)
PROG
(PARI) T(n, k)={binomial(n, k)*(n-k)!*polcoef(1 + x*atanh(x + O(x^max(1, n-k))), n-k)} \\ Andrew Howroyd, Aug 17 2018
(PARI) T(n, k)=if(k>=n, n==k, binomial(n, k)*if((n-k)%2, 0, (n-k-1)! + (n-k-2)!)) \\ Andrew Howroyd, Aug 17 2018
CROSSREFS
KEYWORD
AUTHOR
Paul Barry, Oct 12 2009
STATUS
approved