login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A166357
Exponential Riordan array [1+x*arctanh(x), x].
3
1, 0, 1, 2, 0, 1, 0, 6, 0, 1, 8, 0, 12, 0, 1, 0, 40, 0, 20, 0, 1, 144, 0, 120, 0, 30, 0, 1, 0, 1008, 0, 280, 0, 42, 0, 1, 5760, 0, 4032, 0, 560, 0, 56, 0, 1, 0, 51840, 0, 12096, 0, 1008, 0, 72, 0, 1, 403200, 0, 259200, 0, 30240, 0, 1680, 0, 90, 0, 1
OFFSET
0,4
COMMENTS
Row sums are A166358. Diagonal sums are A166359.
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..1274 (rows 0..49)
FORMULA
Number triangle T(n,k) = [k<=n]*A166356((n-k)/2)*C(n,k)*(1+(-1)^(n-k))/2.
EXAMPLE
Triangle begins
1;
0, 1;
2, 0, 1;
0, 6, 0, 1;
8, 0, 12, 0, 1;
0, 40, 0, 20, 0, 1;
144, 0, 120, 0, 30, 0, 1;
0, 1008, 0, 280, 0, 42, 0, 1;
5760, 0, 4032, 0, 560, 0, 56, 0, 1;
0, 51840, 0, 12096, 0, 1008, 0, 72, 0, 1;
403200, 0, 259200, 0, 30240, 0, 1680, 0, 90, 0, 1;
MATHEMATICA
(* The function RiordanArray is defined in A256893. *)
RiordanArray[1 + # ArcTanh[#]&, #&, 11, True] // Flatten (* Jean-François Alcover, Jul 19 2019 *)
PROG
(PARI) T(n, k)={binomial(n, k)*(n-k)!*polcoef(1 + x*atanh(x + O(x^max(1, n-k))), n-k)} \\ Andrew Howroyd, Aug 17 2018
(PARI) T(n, k)=if(k>=n, n==k, binomial(n, k)*if((n-k)%2, 0, (n-k-1)! + (n-k-2)!)) \\ Andrew Howroyd, Aug 17 2018
CROSSREFS
Sequence in context: A166335 A109187 A265089 * A067147 A112227 A166378
KEYWORD
easy,nonn,tabl
AUTHOR
Paul Barry, Oct 12 2009
STATUS
approved