login
A166360
Triangle of Narayana numbers mod 2, T(n,k) = A001263(n,k) mod 2.
4
1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1
OFFSET
1,1
LINKS
EXAMPLE
Triangle begins:
1
1 1
1 1 1
1 0 0 1
1 0 0 0 1
1 1 0 0 1 1
1 1 1 1 1 1 1
1 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 1
1 1 0 0 0 0 0 0 1 1
1 1 1 0 0 0 0 0 1 1 1
1 0 0 1 0 0 0 0 1 0 0 1
1 0 0 0 1 0 0 0 1 0 0 0 1
1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
....
PROG
(PARI) p = 2; s=14; NT = matrix(s, s, n, k, binomial(n-1, k-1)*binomial(n, k-1)/k);
NTMP = matrix(s, s, n, k, NT[n, k]%p);
for(n=1, s, for(k=1, n, print1(NTMP[n, k], " ")); print())
(Haskell)
a166360 n k = a166360_tabl !! (n-1) !! (k-1)
a166360_row n = a166360_tabl !! (n-1)
a166360_tabl = map (map (flip mod 2)) a001263_tabl
-- Reinhard Zumkeller, Oct 10 2013
CROSSREFS
Cf. A230116 (rows seen as binary numbers).
Sequence in context: A014163 A358672 A308016 * A204183 A204177 A185917
KEYWORD
easy,nonn,tabl
AUTHOR
Gerald McGarvey, Oct 12 2009
STATUS
approved