login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A112227
A scaled Hermite triangle.
0
1, 0, 1, -2, 0, 1, 0, -6, 0, 1, 12, 0, -12, 0, 1, 0, 60, 0, -20, 0, 1, -120, 0, 180, 0, -30, 0, 1, 0, -840, 0, 420, 0, -42, 0, 1, 1680, 0, -3360, 0, 840, 0, -56, 0, 1, 0, 15120, 0, -10080, 0, 1512, 0, -72, 0, 1, -30240, 0, 75600, 0, -25200, 0, 2520, 0, -90, 0, 1, 0, -332640, 0, 277200, 0, -55440, 0, 3960, 0, -110, 0, 1, 665280, 0
OFFSET
0,4
COMMENTS
Inverse of number triangle A067147. Diagonal sums are A002119.
FORMULA
Number triangle T(n, k)=A060821(n, k)/2^k; T(n, k)=n!/(k!*2^((n-k)/2)((n-k)/2)!)*cos(pi*(n-k)/2)*2^((n+k)/2)(1+(-1)^(n+k))/2^(k+1) T(n, k)=A001498((n+k)/2, (n-k)/2)*cos(pi(n-k)/2)*2^((n+k)/2)(1+(-1)^(n+k))/2^(k+1);
Exponential Riordan array (e^(-x^2),x). - Paul Barry, Sep 12 2006
EXAMPLE
Triangle begins
1;
0,1;
-2,0,1;
0,-6,0,1;
12,0,-12,0,1;
0,60,0,-20,0,1;
MATHEMATICA
(* The function RiordanArray is defined in A256893. *)
rows = 12;
R = RiordanArray[E^(-#^2)&, #&, rows, True];
R // Flatten
CROSSREFS
Sequence in context: A265089 A166357 A067147 * A166378 A249820 A136579
KEYWORD
easy,sign,tabl
AUTHOR
Paul Barry, Aug 28 2005
STATUS
approved