OFFSET
2,2
COMMENTS
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 2..400
N. Bergeron, C. Hohlweg, M. Zabrocki, Posets related to the connectivity set of Coxeter groups, arXiv:math/0509271 [math.CO], 2005-2006.
Richard J. Martin, and Michael J. Kearney, Integral representation of certain combinatorial recurrences, Combinatorica: 35:3 (2015), 309-315.
FORMULA
G.f.: f(x) = (g(2x)+3)/(2 g(x)) + x - 2 where g(x) = sum_{n >= 0} n! x^n.
a(n) ~ n! * 2^(n-1) * (1 - 1/(2*n) - 1/(4*n^2) - 5/(8*n^3) - 35/(16*n^4) - 319/(32*n^5) - 3557/(64*n^6) - 46617/(128*n^7) - 699547/(256*n^8) - 11801263/(512*n^9) - 220778973/(1024*n^10)), for coefficients see A260952. - Vaclav Kotesovec, Jul 29 2015
EXAMPLE
For n=2, the Weyl group of order 4 is generated by {s_0', s_1} with (s_0')^2=s_1^2 = (s_0' s_1)^2 = 1, s_0' s_1 is the only element with a reduced word containing both simple reflections (the other elements are 1, s_0' and s_1).
For n=3, the Weyl group of type D is isomorphic to S_4 where there are 13 'connected permutations' (see A003319).
MAPLE
f:=n->coeff(series((add(2^k*k!*x^k, k=1..n)+4)/add(2*k!*x^k, k=0..n)+x-2, x, n+1), x, n);
MATHEMATICA
nmax = 20; Rest[Rest[CoefficientList[Assuming[Element[x, Reals], Series[(Exp[1/(2*x)] * ExpIntegralEi[1/(2*x)] + 6*x*Exp[1/x]) / (4*ExpIntegralEi[1/x]) + x - 2, {x, 0, nmax}]], x]]] (* Vaclav Kotesovec, Aug 05 2015 after Martin and Kearney *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Mike Zabrocki, Aug 28 2005
STATUS
approved