login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A065550
a(n) = floor(sqrt(phi(w)*sigma(w)+w^2)), where w=10^n.
1
13, 136, 1391, 14030, 140865, 1411444, 14128309, 141352267, 1413868217, 14140409111, 141412724154, 1414170403052, 14141919829640, 141420277272713, 1414208167563878, 14142108649717545, 141421221367320690, 1414212888023339560, 14142132251982630599, 141421339378569021517
OFFSET
1,1
COMMENTS
a(n) tends to sqrt(2)*(10^n) when n->oo.
LINKS
FORMULA
a(n) = floor(sqrt(A062354(w) + A000290(w))), where w=10^n.
a(n) = floor(10^n * sqrt(2 - 5^(-n-1) - 2^(-n-1) + 10^(-n-1))). - Robert Israel, Dec 03 2024
MAPLE
a:= n -> floor(sqrt(2*100^n - 20^n/5 - 50^n/2 + 10^n/10)):
map(a, [$1..100]); # Robert Israel, Dec 03 2024
MATHEMATICA
a[n_] := Floor[Sqrt[EulerPhi[10^n] * DivisorSigma[1, 10^n] + 100^n]]; Array[a, 20] (* Amiram Eldar, Jun 12 2022 *)
PROG
(PARI) a(n) = my(w=10^n); sqrtint(eulerphi(w)*sigma(w)+w^2); \\ Michel Marcus, Mar 23 2020
(Python)
from sympy import integer_nthroot, totient as phi, divisor_sigma as sigma
def isqrt(n): return integer_nthroot(n, 2)[0]
def a(n): w = 10**n; return isqrt(phi(w)*sigma(w, 1) + w**2)
print([a(n) for n in range(1, 21)]) # Michael S. Branicky, Jun 12 2022
CROSSREFS
KEYWORD
nonn,changed
AUTHOR
Labos Elemer, Nov 13 2001
EXTENSIONS
Corrected and extended by Michel Marcus, Jun 12 2022
STATUS
approved