login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A065549
a(1) = 1; for n > 1, a(n) = 2^((A000043(n) - 1)/2).
4
2, 4, 8, 64, 256, 512, 32768, 1073741824, 17592186044416, 9007199254740992, 9223372036854775808, 1852673427797059126777135760139006525652319754650249024631321344126610074238976
OFFSET
2,1
COMMENTS
Proper subset of A065405.
These values also relate to the sequence of perfect numbers. Every even perfect number except 6 can be written as Sum_{k=1..a(n)} (2*k-1)^3. - Derek Orr, Sep 28 2013
Positive real roots of 2n^4 - n^2 - A000396(n) = 0 for A000396(n) > 6. - César Aguilera, Nov 11 2018
LINKS
FORMULA
log(n) is approximately log(sqrt(A000668(n)/2)). - César Aguilera, Nov 11 2018
MATHEMATICA
Array[2^((MersennePrimeExponent@ # - 1)/2) &, 12, 2] (* Michael De Vlieger, Aug 25 2018 *)
PROG
(PARI) lista(nn) = {forprime(p=3, nn, if (isprime(2^p-1), print1(2^((p-1)/2), ", ")); ); } \\ Michel Marcus, Aug 04 2016
CROSSREFS
KEYWORD
nonn
AUTHOR
Labos Elemer, Nov 13 2001
STATUS
approved