login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A065547
Triangle of Salie numbers.
16
1, 0, 1, 0, -1, 1, 0, 3, -3, 1, 0, -17, 17, -6, 1, 0, 155, -155, 55, -10, 1, 0, -2073, 2073, -736, 135, -15, 1, 0, 38227, -38227, 13573, -2492, 280, -21, 1, 0, -929569, 929569, -330058, 60605, -6818, 518, -28, 1, 0, 28820619, -28820619, 10233219, -1879038, 211419, -16086, 882, -36, 1, 0, -1109652905
OFFSET
0,8
COMMENTS
Coefficients of polynomials H(n,x) related to Euler polynomials through H(n,x(x-1)) = E(2n,x).
LINKS
D. Dumont and J. Zeng, Polynomes d'Euler et les fractions continues de Stieltjes-Rogers, Ramanujan J. 2 (1998) 3, 387-410.
J. M. Hammersley, An undergraduate exercise in manipulation, Math. Scientist, 14 (1989), 1-23.
Ira M. Gessel and X. G. Viennot, Determinants, paths and plane partitions, 1989, p. 27, eqn 12.1.
FORMULA
E.g.f.: Sum_{n, k=0..oo} T(n, k) t^k x^(2n)/(2n)! = cosh(sqrt(1+4t) x/2) / cosh(x/2).
T(k, n) = Sum_{i=0..n-k} A028296(i)/4^(n-k)*C(2n, 2i)*C(n-i, n-k-i), or 0 if n<k.
Polynomial recurrences: x^n = Sum_{0<=2i<=n} C(n, 2i)*H(n-i, x); (1/4+x)^n = Sum_{m=0..n} C(2n, 2m)*(1/4)^(n-m)*H(m, x).
Dumont/Zeng give a continued fraction and other formulas.
Triangle T(n, k) read by rows; given by [0, -1, -2, -4, -6, -9, -12, -16, ...] DELTA A000035, where DELTA is Deléham's operator defined in A084938.
Sum_{k=0..n} (-4)^(n-k)*T(n,k) = A000364(n) (Euler numbers). - Philippe Deléham, Oct 25 2006
EXAMPLE
Triangle begins:
1;
0, 1;
0, -1, 1;
0, 3, -3, 1;
0, -17, 17, -6, 1;
0, 155, -155, 55, -10, 1;
...
MATHEMATICA
h[n_, x_] := Sum[c[k]*x^k, {k, 0, n}]; eq[n_] := SolveAlways[h[n, x*(x - 1)] == EulerE[2*n, x], x]; row[n_] := Table[c[k], {k, 0, n}] /. eq[n] // First; Table[row[n], {n, 0, 10}] // Flatten (* Jean-François Alcover, Oct 02 2013 *)
PROG
(PARI) { S2(n, k) = (1/k!)*sum(i=0, k, (-1)^(k-i)*binomial(k, i)*i^n) }{ Eu(n) = sum(m=0, n, (-1)^m*m!*S2(n+1, m+1)*(-1)^floor(m/4)*2^-floor(m/2)*((m+1)%4!=0)) } T(n, k)=if(n<k, 0, sum(l=0, n-k, Eu(2*l)/2^(2*(n-k))*binomial(2*n, 2*l)*binomial(n-l, n-k-l))) \\ Ralf Stephan
CROSSREFS
Sum_{k>=0} (-1)^(n+k)*2^(n-k)*T(n, k) = A005647(n). Sum_{k>=0} (-1)^(n+k)*2^(2n-k)*T(n, k) = A000795(n). Sum_{k>=0} (-1)^(n+k)*T(n, k) = A006846(n), where A006846 = Hammersley's polynomial p_n(1). - Philippe Deléham, Feb 26 2004.
Column sequences (without leading zeros) give, for k=1..10: A065547 (twice), A095652-9.
See A085707 for unsigned and transposed version.
See A098435 for negative values of n, k.
Sequence in context: A264436 A122850 A132062 * A143333 A283798 A065551
KEYWORD
sign,tabl
AUTHOR
Wouter Meeussen, Dec 02 2001
EXTENSIONS
Edited by Ralf Stephan, Sep 08 2004
STATUS
approved