OFFSET
0,8
COMMENTS
Coefficients of polynomials H(n,x) related to Euler polynomials through H(n,x(x-1)) = E(2n,x).
LINKS
D. Dumont and J. Zeng, Polynomes d'Euler et les fractions continues de Stieltjes-Rogers, Ramanujan J. 2 (1998) 3, 387-410.
J. M. Hammersley, An undergraduate exercise in manipulation, Math. Scientist, 14 (1989), 1-23.
Ira M. Gessel and X. G. Viennot, Determinants, paths and plane partitions, 1989, p. 27, eqn 12.1.
A. F. Horadam, Generation of Genocchi polynomials of first order by recurrence relation, Fib. Quart. 2 (1992), 239-243.
FORMULA
E.g.f.: Sum_{n, k=0..oo} T(n, k) t^k x^(2n)/(2n)! = cosh(sqrt(1+4t) x/2) / cosh(x/2).
T(k, n) = Sum_{i=0..n-k} A028296(i)/4^(n-k)*C(2n, 2i)*C(n-i, n-k-i), or 0 if n<k.
Polynomial recurrences: x^n = Sum_{0<=2i<=n} C(n, 2i)*H(n-i, x); (1/4+x)^n = Sum_{m=0..n} C(2n, 2m)*(1/4)^(n-m)*H(m, x).
Dumont/Zeng give a continued fraction and other formulas.
Triangle T(n, k) read by rows; given by [0, -1, -2, -4, -6, -9, -12, -16, ...] DELTA A000035, where DELTA is Deléham's operator defined in A084938.
Sum_{k=0..n} (-4)^(n-k)*T(n,k) = A000364(n) (Euler numbers). - Philippe Deléham, Oct 25 2006
EXAMPLE
Triangle begins:
1;
0, 1;
0, -1, 1;
0, 3, -3, 1;
0, -17, 17, -6, 1;
0, 155, -155, 55, -10, 1;
...
MATHEMATICA
h[n_, x_] := Sum[c[k]*x^k, {k, 0, n}]; eq[n_] := SolveAlways[h[n, x*(x - 1)] == EulerE[2*n, x], x]; row[n_] := Table[c[k], {k, 0, n}] /. eq[n] // First; Table[row[n], {n, 0, 10}] // Flatten (* Jean-François Alcover, Oct 02 2013 *)
PROG
(PARI) { S2(n, k) = (1/k!)*sum(i=0, k, (-1)^(k-i)*binomial(k, i)*i^n) }{ Eu(n) = sum(m=0, n, (-1)^m*m!*S2(n+1, m+1)*(-1)^floor(m/4)*2^-floor(m/2)*((m+1)%4!=0)) } T(n, k)=if(n<k, 0, sum(l=0, n-k, Eu(2*l)/2^(2*(n-k))*binomial(2*n, 2*l)*binomial(n-l, n-k-l))) \\ Ralf Stephan
CROSSREFS
Sum_{k>=0} (-1)^(n+k)*2^(n-k)*T(n, k) = A005647(n). Sum_{k>=0} (-1)^(n+k)*2^(2n-k)*T(n, k) = A000795(n). Sum_{k>=0} (-1)^(n+k)*T(n, k) = A006846(n), where A006846 = Hammersley's polynomial p_n(1). - Philippe Deléham, Feb 26 2004.
See A085707 for unsigned and transposed version.
See A098435 for negative values of n, k.
KEYWORD
sign,tabl
AUTHOR
Wouter Meeussen, Dec 02 2001
EXTENSIONS
Edited by Ralf Stephan, Sep 08 2004
STATUS
approved