|
|
A143333
|
|
Pascal's triangle binomial(n,m) read by rows, all even elements replaced by zero.
|
|
4
|
|
|
1, 1, 1, 1, 0, 1, 1, 3, 3, 1, 1, 0, 0, 0, 1, 1, 5, 0, 0, 5, 1, 1, 0, 15, 0, 15, 0, 1, 1, 7, 21, 35, 35, 21, 7, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 9, 0, 0, 0, 0, 0, 0, 9, 1, 1, 0, 45, 0, 0, 0, 0, 0, 45, 0, 1
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,8
|
|
COMMENTS
|
Row sums are A088560.
A047999(n,k) = A057427(T(n,k)). - Reinhard Zumkeller, Oct 24 2010
|
|
LINKS
|
Reinhard Zumkeller, Rows n = 0..127 of triangle, flattened
Index entries for triangles and arrays related to Pascal's triangle
|
|
FORMULA
|
T(n,m) = A047999(n,m)*A007318(n,m).
|
|
EXAMPLE
|
The triangle starts in row n=0 with columns 0<=m<=n as:
1;
1, 1;
1, 0, 1;
1, 3, 3, 1;
1, 0, 0, 0, 1;
1, 5, 0, 0, 5, 1;
1, 0, 15, 0, 15, 0, 1;
1, 7, 21, 35, 35, 21, 7, 1;
1, 0, 0, 0, 0, 0, 0, 0, 1;
1, 9, 0, 0, 0, 0, 0, 0, 9, 1;
1, 0, 45, 0, 0, 0, 0, 0, 45, 0, 1;
|
|
MATHEMATICA
|
t[n_, m_] = Mod[Binomial[n, m], 2]*Binomial[n, m]; Table[Table[t[n, m], {m, 0, n}], {n, 0, 10}]; Flatten[%]
|
|
PROG
|
(Haskell)
a143333 n k = a143333_tabl !! (n-1) !! (k-1)
a143333_row n = a143333_tabl !! (n-1)
a143333_tabl = zipWith(zipWith (*)) a007318_tabl a047999_tabl
-- Reinhard Zumkeller, Oct 10 2013
|
|
CROSSREFS
|
Cf. A007318, A014421, A047999, A088560. - Reinhard Zumkeller, Oct 24 2010
Sequence in context: A122850 A132062 A065547 * A283798 A065551 A283797
Adjacent sequences: A143330 A143331 A143332 * A143334 A143335 A143336
|
|
KEYWORD
|
nonn,tabl,easy,look
|
|
AUTHOR
|
Roger L. Bagula and Gary W. Adamson, Oct 21 2008
|
|
EXTENSIONS
|
Offset set to 0 by Reinhard Zumkeller, Oct 21 2010
|
|
STATUS
|
approved
|
|
|
|