login
A143331
Lengths of successive runs of 0's in the Thue-Morse sequence A010060.
3
1, 1, 2, 2, 1, 1, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 1, 1, 2, 2, 1, 1, 2, 1, 2, 1, 2, 1, 1, 2, 2, 1, 2, 1, 2, 2, 1, 1, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 1, 1, 2, 2, 1, 2, 1, 2, 2, 1, 1, 2, 1, 2, 1, 2, 1, 1, 2, 2, 1, 1, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 1, 1, 2, 2, 1, 1, 2, 1, 2, 1, 2, 1, 1, 2, 2, 1, 2, 1, 2, 2, 1, 1, 2, 1, 2
OFFSET
1,3
COMMENTS
Also lengths of successive runs of 1's in the Thue-Morse sequence A010059.
Also lengths of successive runs of 1's in the Thue-Morse sequence A001285.
LINKS
FORMULA
a(n) = A026465(2n-1).
EXAMPLE
A010060 begins 011010011001011010010110011010011... so the runs of 0's have lengths 1 1 2 2 1 1 2 1 2 1 2 2 1 2 1 2 1 1 ...
MATHEMATICA
Map[Length, Most[Split[ThueMorse[Range[0, 500]]]][[;;;; 2]]] (* Paolo Xausa, Dec 19 2023 *)
PROG
(Python)
def A143331(n):
if n==1: return 1
def iterfun(f, n=0):
m, k = n, f(n)
while m != k: m, k = k, f(k)
return m
def f(x):
c, s = x, bin(x)[2:]
l = len(s)
for i in range(l&1^1, l, 2):
c -= int(s[i])+int('0'+s[:i], 2)
return c
return iterfun(lambda x:f(x)+(n<<1)-1, (n<<1)-1)-iterfun(lambda x:f(x)+(n-1<<1), (n-1<<1)) # Chai Wah Wu, Jan 30 2025
CROSSREFS
KEYWORD
nonn,easy,changed
AUTHOR
Ray Chandler, Aug 08 2008
STATUS
approved