OFFSET
1,4
COMMENTS
Conjecture: (i) a(n) > 0 for all n > 0.
(ii) Let c be among 3, 4, 5, 7, 8. Then each positive integer n can be written as c^w + x^2 + 2*y^2 + 3*z^2 + x*y*z, where w,x,y,z are nonnegative integers.
This has been verified for all n = 1..3*10^5.
LINKS
Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
EXAMPLE
a(6) = 1 with 6 = 11^0 + 0^2 + 2*1^2 + 3*1^2 + 0*1*1.
a(24) = 1 with 24 = 11^1 + 1^2 + 2*0^2 + 3*2^2 + 1*0*2.
a(71) = 1 with 71 = 11^0 + 4^2 + 2*3^2 + 3*2^2 + 4*3*2.
a(89) = 1 with 89 = 11^0 + 4^2 + 2*6^2 + 3*0^2 + 4*6*0.
a(107) = 1 with 107 = 11^1 + 8^2 + 2*4^2 + 3*0^2 + 8*4*0.
MATHEMATICA
SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]];
tab={}; Do[r=0; Do[If[SQ[4(n-11^w-2y^2-3z^2)+y^2*z^2], r=r+1], {w, 0, Log[11, n]}, {z, 0, Sqrt[(n-11^w)/3]}, {y, 0, Sqrt[(n-11^w-3z^2)/2]}]; tab=Append[tab, r], {n, 1, 100}]; Print[tab]
CROSSREFS
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Mar 10 2022
STATUS
approved