login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A351617
Number of ways to write n as 11^w + x^2 + 2*y^2 + 3*z^2 + x*y*z, where w,x,y,z are nonnegative integers.
4
1, 1, 1, 2, 2, 1, 1, 2, 1, 2, 1, 4, 4, 3, 4, 1, 3, 5, 3, 5, 1, 5, 5, 1, 3, 4, 3, 6, 5, 5, 2, 4, 4, 3, 2, 8, 4, 5, 5, 5, 2, 4, 3, 5, 3, 5, 5, 5, 5, 7, 3, 5, 5, 4, 4, 3, 4, 8, 3, 8, 2, 6, 8, 3, 5, 4, 5, 10, 1, 5, 1, 4, 7, 4, 4, 7, 8, 11, 1, 3, 4, 5, 6, 7, 5, 6, 7, 7, 1, 5, 4, 10, 4, 7, 7, 4, 3, 7, 3, 8
OFFSET
1,4
COMMENTS
Conjecture: (i) a(n) > 0 for all n > 0.
(ii) Let c be among 3, 4, 5, 7, 8. Then each positive integer n can be written as c^w + x^2 + 2*y^2 + 3*z^2 + x*y*z, where w,x,y,z are nonnegative integers.
This has been verified for all n = 1..3*10^5.
EXAMPLE
a(6) = 1 with 6 = 11^0 + 0^2 + 2*1^2 + 3*1^2 + 0*1*1.
a(24) = 1 with 24 = 11^1 + 1^2 + 2*0^2 + 3*2^2 + 1*0*2.
a(71) = 1 with 71 = 11^0 + 4^2 + 2*3^2 + 3*2^2 + 4*3*2.
a(89) = 1 with 89 = 11^0 + 4^2 + 2*6^2 + 3*0^2 + 4*6*0.
a(107) = 1 with 107 = 11^1 + 8^2 + 2*4^2 + 3*0^2 + 8*4*0.
MATHEMATICA
SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]];
tab={}; Do[r=0; Do[If[SQ[4(n-11^w-2y^2-3z^2)+y^2*z^2], r=r+1], {w, 0, Log[11, n]}, {z, 0, Sqrt[(n-11^w)/3]}, {y, 0, Sqrt[(n-11^w-3z^2)/2]}]; tab=Append[tab, r], {n, 1, 100}]; Print[tab]
CROSSREFS
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Mar 10 2022
STATUS
approved