login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A074293
Dominant (i.e., most populous) digit in Kolakoski sequence (A000002) when partitioned into groups of 5.
4
1, 2, 2, 1, 1, 2, 1, 2, 2, 1, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 1, 1, 2, 1, 1, 2, 2, 1, 2, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 2, 1, 1, 2, 1, 2, 1, 2, 1, 2
OFFSET
0,2
LINKS
EXAMPLE
The Kolakoski sequence begins (1,2,2,1,1), (2,1,2,2,1), (2,2,1,1,2), (1,1,2,2,1), hence sequence begins 1,2,2,1.
MAPLE
lim:=400: s:=[1, 2, 2]: for n from 3 to lim do for i from 1 to s[n] do s:=[op(s), 1+((n-1)mod 2)]: od: od: lim2:=floor(nops(s)/5)-1: for n from 0 to lim2 do if(s[5*n+1]+s[5*n+2]+s[5*n+3]+s[5*n+4]+s[5*n+5]<=7)then printf("1, "): else printf("2, "): fi: od: # Nathaniel Johnston, May 01 2011
CROSSREFS
Sequence in context: A167677 A278387 A351617 * A013949 A331349 A078880
KEYWORD
nonn,easy
AUTHOR
Jon Perry, Sep 21 2002
STATUS
approved