|
|
A078880
|
|
The sequence starting with 2 that equals its own run length sequence.
|
|
3
|
|
|
2, 2, 1, 1, 2, 1, 2, 2, 1, 2, 2, 1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 1, 2, 1, 2, 2, 1, 1, 2, 1, 1, 2, 1, 2, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 1, 2, 1, 1, 2, 1, 1, 2, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 1, 2, 2, 1, 1, 2, 1, 1, 2, 1, 2, 2, 1, 2, 1, 1, 2, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 1, 2, 2, 1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 1, 2, 1
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
It is an unsolved problem to show that the density of 1's is equal to 1/2.
The sequence can be generated by starting with 22 and applying the block-substitution rules 22 -> 2211, 21 -> 221, 12 -> 211, 11 -> 21. (Lagarias)
|
|
REFERENCES
|
M. S. Keane, Ergodic theory and subshifts of finite type, Chap. 2 of T. Bedford et al., eds., Ergodic Theory, Symbolic Dynamics and Hyperbolic Spaces, Oxford, 1991, esp. p. 50.
|
|
LINKS
|
|
|
FORMULA
|
a(n) = k(n+1), where k=A000002, the Kolakoski sequence.
|
|
EXAMPLE
|
Start with 2, which generates 22 (so that the first run length is 2); then 22 generates 2211 (so that the first two run lengths are 2 and 2); then 2211 generates 221121 and so on.
|
|
MATHEMATICA
|
seed = {2, 1}; w = {}; i = 1; Do[w = Join[w, Array[seed[[Mod[i - 1, Length[seed]] + 1]] &, If[i > Length[w], seed, w][[i]]]]; i++, {n, 70}]; w (* Ivan Neretin, Apr 02 2015 *)
|
|
CROSSREFS
|
See A000002, this sequence prepended with 1, for properties, formulas, references, links, programs, etc.
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|