login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A078881
Size of the largest subset S of {1,2,3,...,n} with the property that if i and j are distinct elements of S then i XOR j is not in S, where XOR is the bitwise exclusive-OR operator.
3
1, 2, 2, 3, 4, 4, 4, 5, 6, 7, 8, 8, 8, 8, 8, 9, 10, 11, 12, 13, 14, 15, 16, 16, 16, 16, 16, 16, 16, 16, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44
OFFSET
1,2
COMMENTS
Is this sequence the same as A006165?
The answer is yes, as shown by Hsien-Kuei Hwang, S Janson, TH Tsai (2016). More precisely, a(n) = A006165(n+1) for all n >= 1. - N. J. A. Sloane, Nov 26 2017
Can be formulated as an integer linear program: maximize sum {i = 1 to n} x[i] subject to x[i] + x[j] + x[i XOR j] <= 2 for all i < j, x[i] in {0,1} for all i. - Rob Pratt, Feb 09 2010
a(n) = A006165(n+1) checked for n <= 1023. - Rob Pratt, Dec 04 2014
REFERENCES
Hsien-Kuei Hwang, S Janson, TH Tsai, Exact and asymptotic solutions of the recurrence f(n) = f(floor(n/2)) + f(ceiling(n/2)) + g(n): theory and applications, Preprint, 2016; http://140.109.74.92/hk/wp-content/files/2016/12/aat-hhrr-1.pdf. Also Exact and Asymptotic Solutions of a Divide-and-Conquer Recurrence Dividing at Half: Theory and Applications, ACM Transactions on Algorithms, 13:4 (2017), #47; DOI: 10.1145/3127585
FORMULA
a(n) = A006165(n+1) for all n >= 1. - N. J. A. Sloane, Nov 26 2017
CROSSREFS
Cf. A078882.
Same (apart from offset) as A006165.
Sequence in context: A316434 A066997 A006165 * A336095 A131807 A104351
KEYWORD
nonn
AUTHOR
John W. Layman, Dec 11 2002
EXTENSIONS
More terms from Rob Pratt, Feb 09 2010
STATUS
approved