login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A352259
Number of ways to write n as w^6 + x^2 + 2*y^2 + 3*z^2 + x*y*z, where w,x,y,z are nonnegative integers.
4
1, 2, 2, 3, 4, 3, 2, 3, 3, 3, 2, 3, 6, 4, 3, 2, 2, 5, 5, 5, 4, 3, 4, 2, 1, 5, 5, 4, 6, 5, 3, 3, 4, 5, 4, 5, 7, 5, 4, 5, 4, 3, 3, 3, 4, 3, 3, 5, 6, 7, 6, 5, 7, 6, 4, 4, 4, 7, 5, 4, 4, 3, 7, 5, 5, 6, 6, 10, 8, 3, 3, 4, 5, 8, 4, 9, 13, 12, 8, 2, 7, 10, 9, 10, 9, 7, 5, 3, 3, 8, 5, 10, 10, 6, 7, 8, 6, 10, 9, 11, 10
OFFSET
0,2
COMMENTS
Conjecture 1: (i) a(n) > 0 for every n = 0,1,2,.... Moreover, 106, 744, 5469 and 331269 are the only nonnegative integers not in the set {w + x^2 + 2*y^2 + 3*z^2 + x*y*z: w = 0,1; x,y,z = 0,1,2,...}.
(ii) Let k be one of 4, 5, 6, 7. Then each n = 0,1,2,... can be written as 10*w^k + x^2 + 2*y^2 + 3*z^2 + x*y*z, where w,x,y,z are nonnegative integers.
(iii) Let c be among 1, 3, 4, 6, 7, and let k be 4 or 5. Then every n = 0,1,2,... can be written as c*w^k + x^2 + 2*y^2 + 3*z^2 + x*y*z, where w,x,y,z are nonnegative integers.
(iv) Each n = 0,1,2,... can be written as 9*w^4 + x^2 + 2*y^2 + 3*z^2 + x*y*z, where w,x,y,z are nonnegative integers.
Conjecture 2: Every n = 0,1,2,... can be written as 2*w^4 + 3*x^2 + y^2 + z^2 + x*y*z, where w,x,y,z are nonnegative integers.
We have verified Conjectures 1 and 2 for all n <= 10^5.
EXAMPLE
a(24) = 1 with 24 = 0^6 + 4^2 + 2*2^2 + 3*0^2 + 4*2*0.
a(106) = 1 with 106 = 2^6 + 1^2 + 2*2^2 + 3*3^2 + 1*2*3.
MATHEMATICA
SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]];
tab={}; Do[r=0; Do[If[SQ[4(n-w^6-2y^2-3z^2)+y^2*z^2], r=r+1], {w, 0, n^(1/6)}, {z, 0, Sqrt[(n-w^6)/3]}, {y, 0, Sqrt[(n-w^6-3z^2)/2]}]; tab=Append[tab, r], {n, 0, 100}]; Print[tab]
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Mar 10 2022
STATUS
approved