OFFSET
0,2
COMMENTS
a(n) = a power of 2 iff n = 2^k - 2, 2^k - 1 or 2^k.
Sums of rows of the triangle in A143333. - Reinhard Zumkeller, Oct 24 2010
LINKS
Robert Israel, Table of n, a(n) for n = 0..3420
FORMULA
a(2^n)=2; a(2^n-1)=2^(2^n-1); a(2^n+1)=2^(n+1)+4 ... - Benoit Cloitre, Nov 19 2003
MAPLE
T:= [1]: R:= 1:
for i from 1 to 50 do
T:= [1, op(T[2..-1]+T[1..-2]), 1];
R:= R, convert(select(type, T, odd), `+`)
od:
R; # Robert Israel, Apr 17 2020
MATHEMATICA
f[n_] := Plus @@ Select[ Table[ Binomial[n, i], {i, 0, n}], OddQ[ # ] & ]; Table[ f[n], {n, 0, 38}] (* Robert G. Wilson v, Nov 19 2003 *)
PROG
(PARI) a(n)=sum(i=0, n, binomial(n, i)*(binomial(n, i)%2))
CROSSREFS
KEYWORD
nonn,look
AUTHOR
Yuval Dekel (dekelyuval(AT)hotmail.com), Nov 17 2003
EXTENSIONS
Edited and extended by Robert G. Wilson v and Ray Chandler, Nov 19 2003
STATUS
approved