The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A088560 Sum of odd entries in row n of Pascal's triangle. 3
 1, 2, 2, 8, 2, 12, 32, 128, 2, 20, 92, 464, 992, 4032, 8192, 32768, 2, 36, 308, 2320, 9692, 52712, 164320, 781312, 1470944, 6249152, 13748672, 56768768, 67100672, 268419072, 536870912, 2147483648, 2, 68, 1124, 14352, 117812, 1003960, 5670400 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS a(n) = a power of 2 iff n = 2^k - 2, 2^k - 1 or 2^k. a(n) = A088504(n) iff n = 2^k - 2, k>1. a(n) > A088504(n) iff n = 2^k - 1. Sums of rows of the triangle in A143333. - Reinhard Zumkeller, Oct 24 2010 LINKS Robert Israel, Table of n, a(n) for n = 0..3420 FORMULA a(n) + A088504(n) = 2^n. A088504(n) - a(n) = A085814(n). a(2^n)=2; a(2^n-1)=2^(2^n-1); a(2^n+1)=2^(n+1)+4 ... - Benoit Cloitre, Nov 19 2003 MAPLE T:= [1]: R:= 1: for i from 1 to 50 do   T:= [1, op(T[2..-1]+T[1..-2]), 1];   R:= R, convert(select(type, T, odd), `+`) od: R; # Robert Israel, Apr 17 2020 MATHEMATICA f[n_] := Plus @@ Select[ Table[ Binomial[n, i], {i, 0, n}], OddQ[ # ] & ]; Table[ f[n], {n, 0, 38}] (* Robert G. Wilson v, Nov 19 2003 *) PROG (PARI) a(n)=sum(i=0, n, binomial(n, i)*(binomial(n, i)%2)) CROSSREFS Cf. A001316, A088504, A085814, A143333. Sequence in context: A098818 A092694 A098984 * A222821 A245497 A086328 Adjacent sequences:  A088557 A088558 A088559 * A088561 A088562 A088563 KEYWORD nonn,look AUTHOR Yuval Dekel (dekelyuval(AT)hotmail.com), Nov 17 2003 EXTENSIONS Edited and extended by Robert G. Wilson v and Ray Chandler, Nov 19 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 29 08:46 EDT 2021. Contains 346340 sequences. (Running on oeis4.)