login
A088560
Sum of odd entries in row n of Pascal's triangle.
3
1, 2, 2, 8, 2, 12, 32, 128, 2, 20, 92, 464, 992, 4032, 8192, 32768, 2, 36, 308, 2320, 9692, 52712, 164320, 781312, 1470944, 6249152, 13748672, 56768768, 67100672, 268419072, 536870912, 2147483648, 2, 68, 1124, 14352, 117812, 1003960, 5670400
OFFSET
0,2
COMMENTS
a(n) = a power of 2 iff n = 2^k - 2, 2^k - 1 or 2^k.
a(n) = A088504(n) iff n = 2^k - 2, k>1. a(n) > A088504(n) iff n = 2^k - 1.
Sums of rows of the triangle in A143333. - Reinhard Zumkeller, Oct 24 2010
LINKS
FORMULA
a(n) + A088504(n) = 2^n. A088504(n) - a(n) = A085814(n).
a(2^n)=2; a(2^n-1)=2^(2^n-1); a(2^n+1)=2^(n+1)+4 ... - Benoit Cloitre, Nov 19 2003
MAPLE
T:= [1]: R:= 1:
for i from 1 to 50 do
T:= [1, op(T[2..-1]+T[1..-2]), 1];
R:= R, convert(select(type, T, odd), `+`)
od:
R; # Robert Israel, Apr 17 2020
MATHEMATICA
f[n_] := Plus @@ Select[ Table[ Binomial[n, i], {i, 0, n}], OddQ[ # ] & ]; Table[ f[n], {n, 0, 38}] (* Robert G. Wilson v, Nov 19 2003 *)
PROG
(PARI) a(n)=sum(i=0, n, binomial(n, i)*(binomial(n, i)%2))
CROSSREFS
KEYWORD
nonn,look
AUTHOR
Yuval Dekel (dekelyuval(AT)hotmail.com), Nov 17 2003
EXTENSIONS
Edited and extended by Robert G. Wilson v and Ray Chandler, Nov 19 2003
STATUS
approved