login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A363418
Square array read by ascending antidiagonals: T(n,k) = [x^(n*k)] ((1 + x)/(1 - x))^k for n, k >= 1.
2
2, 2, 8, 2, 16, 38, 2, 24, 146, 192, 2, 32, 326, 1408, 1002, 2, 40, 578, 4672, 14002, 5336, 2, 48, 902, 11008, 69002, 142000, 28814, 2, 56, 1298, 21440, 216002, 1038984, 1459810, 157184, 2, 64, 1766, 36992, 525002, 4320608, 15856206, 15158272, 864146
OFFSET
1,1
COMMENTS
The n-th row sequence {T(n, k) : k >= 1} satisfies the Gauss congruences, that is, T(n, m*p^r) == T(n, m*p^(r-1)) ( mod p^r ) for all primes p and positive integers m and r.
We conjecture that each row sequence satisfies the stronger supercongruences T(n, m*p^r) == T(n, m*p^(r-1)) ( mod p^(3*r) ) for all primes p >= 5 and positive integers m and r.
REFERENCES
R. P. Stanley, Enumerative Combinatorics Volume 2, Cambridge Univ. Press, 1999, Theorem 6.33, p. 197.
LINKS
Andrew Howroyd, Table of n, a(n) for n = 1..1275 (first 50 antidiagonals)
FORMULA
T(n,k) = Sum_{j = 0..k} binomial(k, j)*binomial((n + 1)*k - j - 1, n*k - j).
T(n,k) = 1/n * [x^k] ((1 + x)/(1 - x))*(n*k).
T(n,k) = (1/n)*Sum_{j = 0..k} binomial(n*k, j)*binomial((n + 1)*k - j - 1, k - j).
T(2*n,k) = [x^(n*k)] Chebyshev_T(k,(1 + x)/(1 - x)), where Chebyshev_T(n,x) denotes the n-th Chebyshev polynomial of the first kind. See A053120.
T(n,k) = Sum_{j = 1..k} (2^j)*binomial(k, j)*binomial(n*k - 1, n*k - j).
T(n,k) = (2*k) * hypergeom([1 - k, 1 - n*k], [2], 2).
Define E(n,x) = exp( Sum_{j >= 1} T(n,j)*x^j/j ). Then T(n+1,k) = [x^k] E(n,x)^k.
E(n,x) = (1/x) * the series reversion of x/E(n-1,x) for n >= 2.
E(n,x)^n = (1/x) * the series reversion of x*((1 - x)/(1 + x))^n.
E(m,x) appears to be the g.f. of the (m + 1)-Schroeder numbers. See A027307 (m = 2) and the cross references there.
The o.g.f. for row n is the diagonal of the bivariate rational function (1/n) * t*f(x)^n/(1 - t*f(x)^n), where f(x) = (1 + x)/(1 - x), and hence is an algebraic function over Q(x) by Stanley 1999, Theorem 6.33, p. 197.
EXAMPLE
Square array begins
n\k | 1 2 3 4 5 6 7
- - + - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
1 | 2 8 38 192 1002 5336 28814 ... (A002003)
2 | 2 16 146 1408 14002 142000 1459810 ... (A103885)
3 | 2 24 326 4672 69002 1038984 15856206 ... (A333715)
4 | 2 32 578 11008 216002 4320608 87588482 ...
5 | 2 40 902 21440 525002 13104184 331482062 ...
6 | 2 48 1298 36992 1086002 32497680 985524066 ...
7 | 2 56 1766 58688 2009002 70097384 2478629134 ...
8 | 2 64 2306 87552 3424002 136485568 5513464322 ...
MAPLE
# display as a square array
T := (n, k) -> add( binomial(k, j)*binomial((n + 1)*k - j - 1, n*k - j) , j = 0..k): for n from 1 to 10 do seq(T(n, k), k = 1..10) end do;
#alternative program
seq(print(seq(simplify(2*k*hypergeom([1 - k, 1 - n*k], [2], 2)), k = 1..10)), n = 1..10);
# display as a sequence
seq(seq(T(n+1-i, i), i = 1..n), n = 1..10);
PROG
(PARI) T(n, k) = sum(j=0, k, binomial(k, j)*binomial((n + 1)*k - j - 1, n*k - j)) \\ Andrew Howroyd, Jan 05 2024
CROSSREFS
A002003 (row 1), A103885 (row 2), A333715 (row 3). Cf. A035607, A362724 - A362733, A363419.
Sequence in context: A098984 A088560 A222821 * A245497 A086328 A095997
KEYWORD
nonn,tabl,easy
AUTHOR
Peter Bala, Jun 12 2023
STATUS
approved