login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A363416
a(n) = 1/sqrt(5) * the imaginary part of Product_{k = 0..n} 1 + k*sqrt(-5).
9
0, 1, 3, -24, -240, 1890, 40446, -311472, -12038544, 86898420, 5614173180, -36099955584, -3786960576672, 20307572439336, 3492389655843480, -14110473458954880, -4223754447793582464, 10493742733654512528, 6488421280167604253616, -4618066393756887442560, -12344309538368967592151040
OFFSET
0,3
COMMENTS
Compare with A105751(n) = the imaginary part of Product_{k = 0..n} 1 + k*sqrt(-1).
Moll (2012) studied the prime divisors of the terms of A105750 - the real part of Product_{k = 0..n} 1 + k*sqrt(-1) - and divided the primes into three classes. Numerical calculation suggests that a similar division holds in this case.
Type 1: primes p that do not divide any element of the sequence {a(n)}.
We conjecture that in this case, unlike in A105750, the set of type 1 primes is empty; that is, every prime p divides some term of this sequence.
Type 2: primes p such that the p-adic valuation v_p(a(n)) has asymptotically linear behavior. An example is given below.
We conjecture that the set of type 2 primes consists of primes p == 1, 3, 7 or 9 (mod 20), equivalently, rational primes that split in the field extension Q(sqrt(-5)) of Q, together with the prime p = 2. See A139513.
Moll's conjecture 5.5 extends to this sequence and takes the form:
(i) the 2-adic valuation v_2(a(n)) ~ n/4 as n -> oo.
(ii) for the other primes of type 2, the p-adic valuation v_p(a(n)) ~ n/(p - 1) as n -> oo.
Type 3: primes p such that the sequence of p-adic valuations {v_p(a(n)) : n >= 0} exhibits an oscillatory behavior (this phrase is not precisely defined). An example is given below.
We conjecture that the set of type 3 primes consists of primes p == 11, 13, 17 or 19 (mod 20), equivalently, primes that remain inert in the field extension Q(sqrt(-5)) of Q, together with the prime p = 5, which ramifies in Q(sqrt(-5)). See A003626.
FORMULA
P-recursive: (n - 1)*a(n) = (2*n - 1)*a(n-1) - n*(5*n^2 - 10*n + 6)*a(n-2) with
a(0) = 0 and a(1) = 1.
a(n) = Sum_{k = 0..floor((n+1)/2)} (-5)^k*Stirling1(n+1,n-2*k).
EXAMPLE
Type 2 prime p = 3: the sequence of 3-adic valuations [v_3(a(n)) : n = 1..80] = [0, 1, 1, 1, 3, 3, 3, 4, 4, 4, 5, 5, 5, 7, 7, 7, 8, 8, 8, 9, 9, 9, 12, 12, 12, 13, 13, 13, 14, 14, 14, 16, 16, 16, 17, 17, 17, 18, 18, 18, 20, 20, 20, 21, 21, 21, 22, 22, 22, 25, 25, 25, 26, 26, 26, 27, 27, 27, 29, 29, 29, 30, 30, 30, 31, 31, 31, 33, 33, 33, 34, 34, 34, 35, 35, 35, 39, 39, 41, 40, 40].
Note that v_3(a(80)) = 40 = 80/(3 - 1), in agreement with the asymptotic behavior for type 2 primes conjectured above.
Type 3 prime p = 11: the sequence of 11-adic valuations [v_11(a(n)) : n = 1..121] = [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2], showing the oscillatory behavior for type 3 primes conjectured above.
MAPLE
a := proc(n) option remember; if n = 0 then 0 elif n = 1 then 1 else (
(2*n - 1)*a(n-1) - n*(5*n^2 - 10*n + 6)*a(n-2) )/(n - 1) end if; end:
seq(a(n), n = 0..20);
CROSSREFS
KEYWORD
sign,easy
AUTHOR
Peter Bala, Jun 01 2023
STATUS
approved