login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A230325
(prime(n)^2 -1)*(prime(n)^2 - prime(n))/2.
1
3, 24, 240, 1008, 6600, 13104, 39168, 61560, 133584, 341040, 446400, 911088, 1377600, 1668744, 2386848, 3869424, 5954280, 6807600, 9922968, 12524400, 14001984, 19225440, 23439864, 31014720, 43803648, 51510000, 55723824, 64921608, 69925680, 80795904, 129040128
OFFSET
1,1
COMMENTS
The number of unordered bases of a (F_p)-vector space of dimension 2, p prime.
LINKS
Mark Herman, Jonathan Pakianathan, Ergun Yalcin, On a canonical construction of tesselated surfaces via finite group theory, Part I, arXiv:1310.3848v1 [math.GT], Oct 14, 2013, see p.34.
FORMULA
(p^2 -1)*(p^2 - p)/2 for p = 2, 3, 5, 7, 11, 13... for p = prime(n).
EXAMPLE
a(25) = (p^2 -1)*(p^2 - p)/2 for p = prime(25) = (97^2 -1)*(97^2 - 97)/2 = 43803648.
MATHEMATICA
Table[p = Prime[n]; (p^2 - 1)*(p^2 - p)/2, {n, 50}] (* T. D. Noe, Oct 18 2013 *)
CROSSREFS
Cf. A000040.
Sequence in context: A001099 A277462 A371522 * A363416 A365154 A361846
KEYWORD
nonn,easy
AUTHOR
Jonathan Vos Post, Oct 16 2013
STATUS
approved