login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A230323
E.g.f.: Sum_{n>=0} x^n/n! * LambertW(-n*x)/(-n*x).
2
1, 1, 3, 16, 149, 2196, 47167, 1380394, 52206345, 2457554248, 140408870651, 9563233300974, 765251809488157, 71012512562009500, 7552175961721086711, 911014865916673379026, 123562591612443767093393, 18704896422725902820936976, 3140424504257773679216307955
OFFSET
0,3
LINKS
FORMULA
a(n) = Sum_{k=0..n} binomial(n,k) * (n-k)^k * (k+1)^(k-1).
E.g.f.: Sum_{n>=0} x^n/n! * Sum_{k>=0} n^k*(k+1)^(k-1)*x^k/k!.
E.g.f.: Sum_{n>=0} x^n/n! * [ Sum_{k>=0} (n*k+1)^(k-1)*x^k/k! ]^n.
EXAMPLE
E.g.f.: A(x) = 1 + x + 3*x^2/2! + 16*x^3/3! + 149*x^4/4! + 2196*x^5/5! +...
Let W(x) = LambertW(-x)/(-x), then
W(n*x) = Sum_{k>=0} n^k*(k+1)^(k-1)*x^k/k! and
W(n*x) = [ Sum_{k>=0} (n*k+1)^(k-1)*x^k/k! ]^n
where
A(x) = 1 + x*W(x) + x^2*W(2*x)/2! + x^3*W(3*x)/3! + x^4*W(4*x)/4! + x^5*W(5*x)/5! + x^6*W(6*x)/6! +...
Related expansions:
W(1*x) = 1 + x + 3*x^2/2! + 16*x^3/3! + 125*x^4/4! + 1296*x^5/5! +...
W(2*x) = 1 + 2*x + 12*x^2/2! + 128*x^3/3! + 2000*x^4/4! + 41472*x^5/5! +...
W(3*x) = 1 + 3*x + 27*x^2/2! + 432*x^3/3! + 10125*x^4/4! + 314928*x^5/5! +...
W(4*x) = 1 + 4*x + 48*x^2/2! + 1024*x^3/3! + 32000*x^4/4! + 1327104*x^5/5! +...
W(5*x) = 1 + 5*x + 75*x^2/2! + 2000*x^3/3! + 78125*x^4/4! + 4050000*x^5/5! +...
...
W(1*x) = (1 + x + 3*x^2/2! + 4^2*x^3/3! + 5^3*x^4/4! + 6^4*x^5/5! +...)^1
W(2*x) = (1 + x + 5*x^2/2! + 7^2*x^3/3! + 9^3*x^4/4! + 11^4*x^5/5! +...)^2
W(3*x) = (1 + x + 7*x^2/2! + 10^2*x^3/3! + 13^3*x^4/4! + 16^4*x^5/5! +...)^3
W(4*x) = (1 + x + 9*x^2/2! + 13^2*x^3/3! + 17^3*x^4/4! + 21^4*x^5/5! +...)^4
W(5*x) = (1 + x + 11*x^2/2! + 16^2*x^3/3! + 21^3*x^4/4! + 26^4*x^5/5! +...)^5
...
MATHEMATICA
Flatten[{1, Table[Sum[Binomial[n, k] * (n-k)^k * (k+1)^(k-1), {k, 0, n}], {n, 1, 20}]}] (* Vaclav Kotesovec, Jul 29 2014 *)
PROG
(PARI) {a(n)=sum(k=0, n, binomial(n, k)*(n-k)^k*(k+1)^(k-1))}
for(n=0, 20, print1(a(n), ", "))
(PARI) {a(n)=local(A=1);
A=sum(m=0, n, x^m/m!*sum(j=0, n, m^j*(j+1)^(j-1)*x^j/j! +x*O(x^n)) );
n!*polcoeff(A, n)}
for(n=0, 20, print1(a(n), ", "))
(PARI) {a(n)=local(A=1);
A=sum(m=0, n, x^m/m!*sum(j=0, n, (m*j+1)^(j-1)*x^j/j! +x*O(x^n))^m );
n!*polcoeff(A, n)}
for(n=0, 20, print1(a(n), ", "))
(PARI) {a(n)=local(W=sum(m=0, n, (m+1)^(m-1)*x^m/m!)+x*O(x^n), A=1);
A=sum(m=0, n, x^m/m!*subst(W, x, m*x));
n!*polcoeff(A, n)}
for(n=0, 20, print1(a(n), ", "))
(PARI) {a(n)=local(LambertW=serreverse(x*exp(x+x*O(x^n))), A=1);
A=1+sum(m=1, n, x^m/m!*subst(LambertW, x, -m*x)/(-m*x));
n!*polcoeff(A, n)}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
Sequence in context: A214933 A376565 A376563 * A217251 A125281 A374853
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 16 2013
STATUS
approved