login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A230322
Expansion of f(-x^3, -x^4) / f(-x^2,-x^5) in powers of x where f(,) is Ramanujan's two-variable theta function.
2
1, 0, 1, -1, 0, 0, 0, 1, -1, 1, -1, 0, 0, -1, 2, -1, 2, -2, 0, 0, -1, 3, -3, 3, -3, 1, 0, -2, 5, -4, 5, -5, 1, 0, -3, 7, -7, 8, -7, 2, 0, -5, 11, -10, 12, -11, 3, 1, -7, 15, -16, 17, -15, 5, 1, -11, 22, -22, 25, -22, 7, 2, -15, 31, -33, 35, -30, 11, 2, -22
OFFSET
0,15
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Euler transform of period 7 sequence [ 0, 1, -1, -1, 1, 0, 0, ...].
G.f.: Product_{k>0} (1 - x^(7*k - 3)) * (1 - x^(7*k - 4)) / ((1 - x^(7*k - 2)) * (1 - x^(7*k - 5))).
- a(n) = A229894(7*n + 1).
G.f.: B(x) / C(x), where B(x) is the g.f. of A375150 and C(x) is the g.f. of A375107. - Seiichi Manyama, Aug 03 2024
EXAMPLE
G.f. = 1 + x^2 - x^3 + x^7 - x^8 + x^9 - x^10 - x^13 + 2*x^14 - x^15 + ...
G.f. = 1/q + q^13 - q^20 + q^48 - q^55 + q^62 - q^69 - q^90 + 2*q^97 - ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ QPochhammer[ x^3, x^7] QPochhammer[ x^4, x^7] / (QPochhammer[ x^2, x^7] QPochhammer[ x^5, x^7]), {x, 0, n}]
PROG
(PARI) {a(n) = if( n<0, 0, polcoeff( prod( k=1, n, (1 - x^k)^[ 0, 0, -1, 1, 1, -1, 0][k%7+1], 1 + x * O(x^n)), n))}
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, Oct 16 2013
STATUS
approved