Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #14 Aug 03 2024 07:12:04
%S 1,0,1,-1,0,0,0,1,-1,1,-1,0,0,-1,2,-1,2,-2,0,0,-1,3,-3,3,-3,1,0,-2,5,
%T -4,5,-5,1,0,-3,7,-7,8,-7,2,0,-5,11,-10,12,-11,3,1,-7,15,-16,17,-15,5,
%U 1,-11,22,-22,25,-22,7,2,-15,31,-33,35,-30,11,2,-22
%N Expansion of f(-x^3, -x^4) / f(-x^2,-x^5) in powers of x where f(,) is Ramanujan's two-variable theta function.
%C Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
%H G. C. Greubel, <a href="/A230322/b230322.txt">Table of n, a(n) for n = 0..1000</a>
%H Michael Somos, <a href="/A010815/a010815.txt">Introduction to Ramanujan theta functions</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/RamanujanThetaFunctions.html">Ramanujan Theta Functions</a>
%F Euler transform of period 7 sequence [ 0, 1, -1, -1, 1, 0, 0, ...].
%F G.f.: Product_{k>0} (1 - x^(7*k - 3)) * (1 - x^(7*k - 4)) / ((1 - x^(7*k - 2)) * (1 - x^(7*k - 5))).
%F - a(n) = A229894(7*n + 1).
%F G.f.: B(x) / C(x), where B(x) is the g.f. of A375150 and C(x) is the g.f. of A375107. - _Seiichi Manyama_, Aug 03 2024
%e G.f. = 1 + x^2 - x^3 + x^7 - x^8 + x^9 - x^10 - x^13 + 2*x^14 - x^15 + ...
%e G.f. = 1/q + q^13 - q^20 + q^48 - q^55 + q^62 - q^69 - q^90 + 2*q^97 - ...
%t a[ n_] := SeriesCoefficient[ QPochhammer[ x^3, x^7] QPochhammer[ x^4, x^7] / (QPochhammer[ x^2, x^7] QPochhammer[ x^5, x^7]), {x, 0, n}]
%o (PARI) {a(n) = if( n<0, 0, polcoeff( prod( k=1, n, (1 - x^k)^[ 0, 0, -1, 1, 1, -1, 0][k%7+1], 1 + x * O(x^n)), n))}
%Y Cf. A229894, A375107, A375150.
%K sign
%O 0,15
%A _Michael Somos_, Oct 16 2013