login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A365154
G.f. satisfies A(x) = ( 1 + x*A(x)^2*(1 + x*A(x)) )^3.
1
1, 3, 24, 241, 2739, 33513, 430777, 5736027, 78428376, 1094690208, 15533884197, 223429310925, 3250094373788, 47730565667898, 706726767511254, 10538728632234471, 158132963455869912, 2385819265581499593, 36171764848848749205, 550803320282727312804
OFFSET
0,2
FORMULA
If g.f. satisfies A(x) = ( 1 + x*A(x)^2*(1 + x*A(x))^s )^t, then a(n) = Sum_{k=0..n} binomial(t*(n+k+1),k) * binomial(s*k,n-k)/(n+k+1).
PROG
(PARI) a(n, s=1, t=3) = sum(k=0, n, binomial(t*(n+k+1), k)*binomial(s*k, n-k)/(n+k+1));
CROSSREFS
Sequence in context: A371522 A230325 A363416 * A361846 A365147 A080523
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Aug 23 2023
STATUS
approved