login
A365157
G.f. satisfies A(x) = ( 1 + x*A(x)^2*(1 + x*A(x))^3 )^2.
1
1, 2, 15, 124, 1167, 11772, 124561, 1363964, 15326826, 175739698, 2047974619, 24185317182, 288801732423, 3481242975808, 42303574158234, 517683469595912, 6374096109874427, 78909384182870688, 981600144994348111, 12263583888826309544, 153812133876403777005
OFFSET
0,2
FORMULA
If g.f. satisfies A(x) = ( 1 + x*A(x)^2*(1 + x*A(x))^s )^t, then a(n) = Sum_{k=0..n} binomial(t*(n+k+1),k) * binomial(s*k,n-k)/(n+k+1).
PROG
(PARI) a(n, s=3, t=2) = sum(k=0, n, binomial(t*(n+k+1), k)*binomial(s*k, n-k)/(n+k+1));
CROSSREFS
Sequence in context: A369108 A127610 A085228 * A341726 A055866 A364978
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Aug 23 2023
STATUS
approved