login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A365158
G.f. satisfies A(x) = ( 1 + x*A(x)^2*(1 + x*A(x))^3 )^3.
1
1, 3, 30, 352, 4680, 66852, 1002420, 15562917, 248028012, 4034367018, 66704722941, 1117794312987, 18942067925094, 324048616144950, 5588890522700901, 97074537335184054, 1696556614819124517, 29812650855663860436, 526429300730659123740
OFFSET
0,2
FORMULA
If g.f. satisfies A(x) = ( 1 + x*A(x)^2*(1 + x*A(x))^s )^t, then a(n) = Sum_{k=0..n} binomial(t*(n+k+1),k) * binomial(s*k,n-k)/(n+k+1).
PROG
(PARI) a(n, s=3, t=3) = sum(k=0, n, binomial(t*(n+k+1), k)*binomial(s*k, n-k)/(n+k+1));
CROSSREFS
Sequence in context: A160473 A144283 A229299 * A178016 A365152 A372087
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Aug 23 2023
STATUS
approved