login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A365152
G.f. satisfies A(x) = ( 1 + x*A(x)^2 / (1 - x*A(x))^3 )^3.
2
1, 3, 30, 361, 4887, 71064, 1084338, 17127921, 277691055, 4594624095, 77271742056, 1317037554924, 22699836814548, 394961294853852, 6928051002350154, 122384261274499665, 2175295243858562031, 38875484049230706129, 698131263508514451678
OFFSET
0,2
FORMULA
If g.f. satisfies A(x) = ( 1 + x*A(x)^2 / (1 - x*A(x))^s )^t, then a(n) = Sum_{k=0..n} binomial(t*(n+k+1),k) * binomial(n+(s-1)*k-1,n-k)/(n+k+1).
PROG
(PARI) a(n, s=3, t=3) = sum(k=0, n, binomial(t*(n+k+1), k)*binomial(n+(s-1)*k-1, n-k)/(n+k+1));
CROSSREFS
Sequence in context: A229299 A365158 A178016 * A372087 A357770 A372105
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Aug 23 2023
STATUS
approved