login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A363414 a(n) = (1/2) * the imaginary part of Product_{k = 0..n} 1 + k*sqrt(-4). 0
0, 1, 3, -18, -190, 1035, 25305, -120260, -5954940, 22115925, 2197084175, -5141457750, -1173207584250, 769657081375, 856957094209125, 1127788828491000, -821262134429035000, -2922085673288364375, 1000078365473764126875, 6056214264965246443750, -1508740652939902034493750 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
COMMENTS
Compare with A105751(n) = the imaginary part of Product_{k = 0..n} 1 + k*sqrt(-1).
Moll (2012) studied the prime divisors of the terms of A105750 - the real part of Product_{k = 0..n} 1 + k*sqrt(-1) - and divided the primes into three classes. Numerical calculation suggests that a similar division holds in this case.
Type 1: primes p that do not divide any element of the sequence {a(n)}.
In this case, unlike in A105750, the set of type 1 primes is conjecturally empty; it appears that every prime p divides some term of this sequence.
Type 2: primes p such that the p-adic valuation v_p(a(n)) has asymptotically linear behavior. An example is given below.
We conjecture that the set of type 2 primes consists of primes p == 1 (mod 4), equivalently, rational primes that split in the field extension Q(sqrt(-1)) of Q. See A002144.
Moll's conjecture 5.5 extends to this sequence: for the primes of type 2, the p-adic valuation v_p(a(n)) ~ n/(p - 1) as n -> oo.
Type 3: primes p such that the sequence of p-adic valuations {v_p(a(n)) : n >= 0} exhibits an oscillatory behavior (this phrase is not precisely defined). An example is given below.
We conjecture that the set of type 3 primes consists of primes p == 3 (mod 4), equivalently, rational primes that remain inert in the field extension Q(sqrt(-1)) of Q, together with the prime p = 2, which ramifies in Q(sqrt(-1)). See A002145.
LINKS
FORMULA
a(n) = Sum_{k = 0..floor(n/2)} (-4)^k*Stirling1(n+1,n-2*k).
P-recursive: (n - 1)*a(n) = (2*n - 1)*a(n-1) - n*(4*n^2 - 8*n + 5)*a(n-2) with
a(0) = 0 and a(1) = 1.
EXAMPLE
Type 2 prime p = 5: the sequence of 5-adic valuations [v_5(a(n)) : n = 1..100] = [0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 8, 8, 9, 9, 9, 9, 9, 11, 11, 11, 11, 11, 14, 12, 13, 12, 12, 14, 13, 14, 13, 13, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 17, 17, 17, 17, 17, 19, 18, 19, 18, 18, 21, 19, 20, 19, 19, 20, 20, 20, 20, 20, 21, 21, 21, 21, 21, 23, 23, 23, 24, 24, 24, 24, 24, 25, 25].
Note that v_5(a(100)) = 25 = 100/(5 - 1), in agreement with the asymptotic behavior for type 2 primes conjectured above.
Type 3 prime p = 7: the sequence of 7-adic valuations [v_7(a(n)) : n = 1..100] = [0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 2, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 2, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 2, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 2, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 2, 2, 0, 0], showing the oscillatory behavior for type 3 primes conjectured above.
MAPLE
a := proc(n) option remember; if n = 0 then 0 elif n = 1 then 1 else (
(2*n - 1)*a(n-1) - n*(4*n^2 - 8*n + 5)*a(n-2) )/(n - 1) end if; end:
seq(a(n), n = 0..20);
CROSSREFS
Sequence in context: A355107 A178014 A258659 * A002824 A259336 A308134
KEYWORD
sign,easy
AUTHOR
Peter Bala, Jun 01 2023
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 11 20:49 EDT 2024. Contains 374234 sequences. (Running on oeis4.)