login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A098435
Triangle of Salie numbers T(n,k) for negative n,k, n < k.
3
1, -1, 1, 2, -3, 1, -8, 13, -6, 1, 56, -92, 45, -10, 1, -608, 1000, -493, 115, -15, 1, 9440, -15528, 7662, -1799, 245, -21, 1, -198272, 326144, -160944, 37817, -5180, 462, -28, 1, 5410688, -8900224, 4392080, -1032088, 141465, -12684, 798, -36, 1
OFFSET
1,4
COMMENTS
Inverse matrix of A054142. - Paul Barry, Jan 21 2005
Essentially the same as the triangle giving by [0,-1,-1,-4,-4,-9,-9,-16,-16,-25,...] DELTA[1,0,1,0,1,0,1,0,1,0,...] = 1; 0,1; 0,-1,1; 0,2,-3,1; 0,-8,13,-6,1; 0,56,-92,45,-10,1; ... where DELTA is the operator defined in A084938. - Philippe Deléham, Aug 30 2006
LINKS
FORMULA
See A065547 for formulas.
EXAMPLE
1;
-1, 1;
2, -3, 1;
-8, 13, -6, 1;
56, -92, 45, -10, 1;
MATHEMATICA
rows = 9; A054142 = Table[ PadRight[ Table[ Binomial[2*n-k, k], {k, 0, n}], rows], {n, 0, rows-1}]; inv = Inverse[A054142]; Table[ Take[inv[[n]], n], {n, 1, rows}] // Flatten (* Jean-François Alcover, Oct 02 2013, after Paul Barry *)
CROSSREFS
T(-1, k) = (-1)^k*A005439(k-1). Row sums are zero.
Sequence in context: A110292 A138672 A103749 * A096294 A157963 A135950
KEYWORD
tabl,sign
AUTHOR
Ralf Stephan, Sep 08 2004
STATUS
approved