login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A098432
Coefficients of polynomials S(n,x) related to Springer numbers.
3
1, 8, 7, 128, 304, 177, 3072, 13952, 21080, 10199, 98304, 724992, 2016000, 2441056, 1051745, 3932160, 42762240, 187643904, 407505664, 428605352, 169913511, 188743680, 2839019520, 17974591488, 60428242944, 111985428352
OFFSET
0,2
LINKS
A. Randrianarivony and J. Zeng, Une famille des polynomes qui interpole plusieurs suites..., Adv. Appl. Math. 17 (1996), 1-26.
FORMULA
Recurrence: S(0, x)=1, S(n, x)=(2x+2)(2x+4)S(n-1, x+2)-(2x+1)^2S(n-1, x).
G.f.: Sum[n>=0, S(n, x)t^n] = 1/(1+t-4*2(x+1)t/(1-4*2(x+2)t/(1+t-4*4(x+3)t/(1-4+4(x+4)t/...)))).
EXAMPLE
S(0,x) = 1,
S(1,x) = 8*x + 7,
S(2,x) = 128*x^2 + 304*x + 177,
S(3,x) = 3072*x^3 + 13952*x^2 + 21080*x + 10199.
PROG
(PARI) S(n, x)=if(n<1, 1, (2*x+2)*(2*x+4)*S(n-1, x+2)-(2*x+1)^2*S(n-1, x))
CROSSREFS
Cf. A001586. S(n, 1/2) = A000464(n+1), S(n, -1/2) = A000281(n).
Leading coefficients are A051189. Constant terms are in A098433.
Cf. A001586. S(n, 1/2) = A000464(n), S(n, -1/2) = A000281(n).
Sequence in context: A038285 A354546 A261117 * A197623 A291692 A127583
KEYWORD
tabl,nonn
AUTHOR
Ralf Stephan, Sep 07 2004
STATUS
approved