login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A065403
Primes of the form sigma(m^2) where m is a composite number ordered by values m.
9
31, 127, 1093, 2801, 8191, 19531, 30941, 131071, 88741, 524287, 292561, 797161, 732541, 3500201, 5229043, 12207031, 25646167, 28792661, 39449441, 48037081, 305175781, 262209281, 917087137, 2147483647, 1394714501, 2666986681
OFFSET
1,1
COMMENTS
There are 46 cases below 10^12.
All Mersenne primes are here: sigma((2^((p-1)/2))^2) = sigma(2^(p-1)) = -1 + 2^p, for suitable p.
m is of the form p^(2*e) for some prime p and e > 1 as sigma is multiplicative and m is composite. Terms are sorted by values of m. The sequence isn't monotonic. - David A. Corneth, Jul 18 2020
LINKS
David A. Corneth, Table of n, a(n) for n = 1..10000 (first 100 terms from Harry J. Smith, terms 101-500 from Amiram Eldar)
EXAMPLE
19531 is in the sequence as for the composite m = 125 we have sigma(m^2) = 19531. - David A. Corneth, Jul 18 2020
MATHEMATICA
Do[s=DivisorSigma[1, n]; If[PrimeQ[s]&&!PrimeQ[Sqrt[n]], Print[{n, Sqrt[n], s}]], {n, 1, 20000000}]
PROG
(PARI) { n=0; for (m=1, 10^9, if (isprime(m), next); x=sigma(m^2); if (isprime(x), write("b065403.txt", n++, " ", x); if (n==100, return)) ) } \\ Harry J. Smith, Oct 18 2009
(PARI) upto(n) = {res = List(); forstep(e = 4, logint(n, 2), 2, forprime(p = 2, sqrtnint(n, e), c = (p^(e + 1) - 1)/(p - 1); if(isprime(c), listput(res, [p^e, c]) ) ) ); listsort(res); vector(#res, i, res[i][2]) } \\ David A. Corneth, Jul 18 2020
CROSSREFS
KEYWORD
nonn
AUTHOR
Labos Elemer, Nov 06 2001
EXTENSIONS
Name corrected by David A. Corneth, Jul 18 2020
STATUS
approved