login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A158563
a(n) = 32*n^2 - 1.
4
31, 127, 287, 511, 799, 1151, 1567, 2047, 2591, 3199, 3871, 4607, 5407, 6271, 7199, 8191, 9247, 10367, 11551, 12799, 14111, 15487, 16927, 18431, 19999, 21631, 23327, 25087, 26911, 28799, 30751, 32767, 34847, 36991, 39199, 41471, 43807, 46207, 48671, 51199, 53791
OFFSET
1,1
COMMENTS
The identity (32*n^2-1)^2 - (256*n^2-16)*(2*n)^2 = 1 can be written as a(n)^2 - A158562(n)*A005843(n)^2 = 1. [comment rewritten by R. J. Mathar, Oct 16 2009]
From Omar E. Pol, Apr 21 2021: (Start)
Sequence found by reading the line from 31, in the direction 31, 127, ..., in the rectangular spiral whose vertices are the generalized 18-gonal numbers A274979.
The spiral begins as follows:
46_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _18
| |
| 0 |
| |_ _ _ _ _ _ _ _ _ _ _ _ _ _|
| 1 15
|
51
(End)
LINKS
Vincenzo Librandi, X^2-AY^2=1, Math Forum, 2007. [Wayback Machine link]
FORMULA
G.f.: x*(-31-34*x+x^2)/(x-1)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
a(n) = A244082(n) - 1. - Omar E. Pol, Apr 21 2021
From Amiram Eldar, Mar 09 2023: (Start)
Sum_{n>=1} 1/a(n) = (1 - cot(Pi/(4*sqrt(2)))*Pi/(4*sqrt(2)))/2.
Sum_{n>=1} (-1)^(n+1)/a(n) = (cosec(Pi/(4*sqrt(2)))*Pi/(4*sqrt(2)) - 1)/2. (End)
MATHEMATICA
32 Range[40]^2 - 1 (* Harvey P. Dale, Mar 04 2011 *)
CoefficientList[Series[(- 31 - 34 x + x^2) / (x - 1)^3, {x, 0, 40}], x] (* Vincenzo Librandi, Sep 11 2013 *)
PROG
(Magma) [32*n^2-1: n in [1..40]]; // Vincenzo Librandi, Sep 11 2013
(PARI) a(n)=32*n^2-1 \\ Charles R Greathouse IV, Jun 17 2017
CROSSREFS
Cf. A274979 (generalized 18-gonal numbers).
Sequence in context: A095322 A127578 A333245 * A079141 A049203 A065403
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Mar 21 2009
STATUS
approved