login
A065553
Triangle of Faulhaber numbers (denominators) read by rows.
2
1, 1, 2, 1, 6, 3, 1, 6, 3, 4, 1, 10, 5, 2, 5, 1, 6, 3, 12, 3, 6, 1, 210, 105, 21, 15, 6, 7, 1, 2, 1, 12, 3, 3, 1, 8, 1, 30, 15, 6, 15, 9, 3, 6, 9, 1, 42, 21, 420, 15, 10, 35, 20, 3, 10, 1, 110, 55, 33, 165, 66, 1, 2, 3, 2, 11, 1, 6, 3, 20, 5, 45, 15, 40, 9, 10, 3, 12
OFFSET
0,3
COMMENTS
The numerators are given in A065551. - Wolfdieter Lang, Jun 25 1011
LINKS
Ira M. Gessel and X. G. Viennot, Determinants, paths and plane partitions, 1989, p. 27, eqn 12.2
FORMULA
sum(n>=0, k>=0, f(n, k)*t^k*x^(2*n+1)/(2*n+1)! ) is the expansion of (cosh(sqrt(1+4*t)*x/2)-cosh(x/2))/t/sinh(x/2).
a(n,k) = denominator(f(n,k)). - Wolfdieter Lang, Jun 25 2011
EXAMPLE
{1}, {1, 2}, {1, 6, 3}, {1, 6, 3, 4}, {1, 10, 5, 2, 5}, {1, 6, 3, 12, 3, 6}, ...
CROSSREFS
Cf. A065551.
Sequence in context: A337470 A006019 A201146 * A016545 A142977 A356601
KEYWORD
frac,nonn,tabl
AUTHOR
Wouter Meeussen, Dec 02 2001
STATUS
approved