login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A009343
Expansion of e.g.f. log(1+sin(x)/exp(x)).
0
0, 1, -3, 10, -50, 340, -2888, 29440, -350160, 4759760, -72787488, 1236761920, -23115758720, 471323145280, -10410977045888, 247656022739200, -6312036805140480, 171600628707334400, -4956751714926617088
OFFSET
0,3
FORMULA
E.g.f.: log(1+sin(x)/exp(x)).
a(n) = 2*Sum_(k=1..n, Sum_(j=0..(n-k)/2, C(n,n-k-2*j)*(k^(n-k-2*j) *Sum_(i=0..k/2, (2*i-k)^(k+2*j)*C(k,i)*(-1)^(k+j-i))))/(2^k*k)). - Vladimir Kruchinin, Jun 13 2011
a(n) ~ (-1)^(n+1) * (n-1)! / r^n, where r = 0.588532743981861... is the real root of the equation sin(r) = exp(-r). - Vaclav Kotesovec, Oct 25 2013
MATHEMATICA
CoefficientList[Series[Log[1+Sin[x]/Exp[x]], {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Oct 25 2013 *)
PROG
(Maxima)
a(n):=2*sum(sum(binomial(n, n-k-2*j)*(k^(n-k-2*j)*sum((2*i-k)^(k+2*j) *binomial(k, i)*(-1)^(k+j-i), i, 0, k/2)), j, 0, (n-k)/2)/(2^k*k), k, 1, n); [Vladimir Kruchinin, Jun 13 2011]
CROSSREFS
Sequence in context: A276028 A209902 A049370 * A352414 A341648 A307099
KEYWORD
sign,easy
AUTHOR
EXTENSIONS
Extended with signs by Olivier Gérard, Mar 15 1997
STATUS
approved