login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of e.g.f. log(1+sin(x)/exp(x)).
0

%I #19 Sep 03 2022 23:17:11

%S 0,1,-3,10,-50,340,-2888,29440,-350160,4759760,-72787488,1236761920,

%T -23115758720,471323145280,-10410977045888,247656022739200,

%U -6312036805140480,171600628707334400,-4956751714926617088

%N Expansion of e.g.f. log(1+sin(x)/exp(x)).

%F E.g.f.: log(1+sin(x)/exp(x)).

%F a(n) = 2*Sum_(k=1..n, Sum_(j=0..(n-k)/2, C(n,n-k-2*j)*(k^(n-k-2*j) *Sum_(i=0..k/2, (2*i-k)^(k+2*j)*C(k,i)*(-1)^(k+j-i))))/(2^k*k)). - _Vladimir Kruchinin_, Jun 13 2011

%F a(n) ~ (-1)^(n+1) * (n-1)! / r^n, where r = 0.588532743981861... is the real root of the equation sin(r) = exp(-r). - _Vaclav Kotesovec_, Oct 25 2013

%t CoefficientList[Series[Log[1+Sin[x]/Exp[x]], {x, 0, 20}], x]* Range[0, 20]! (* _Vaclav Kotesovec_, Oct 25 2013 *)

%o (Maxima)

%o a(n):=2*sum(sum(binomial(n,n-k-2*j)*(k^(n-k-2*j)*sum((2*i-k)^(k+2*j) *binomial(k,i)*(-1)^(k+j-i),i,0,k/2)),j,0,(n-k)/2)/(2^k*k),k,1,n); [_Vladimir Kruchinin_, Jun 13 2011]

%K sign,easy

%O 0,3

%A _R. H. Hardin_

%E Extended with signs by _Olivier Gérard_, Mar 15 1997