The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A352414 G.f. A(x) satisfies: A(x)^5 = (1-x) * (A(x) + x)^4. 2
1, 3, -10, 50, -345, 2681, -22416, 196700, -1786715, 16656155, -158443468, 1531830328, -15007700345, 148672680185, -1486712621330, 14987306377954, -152144993493979, 1554005064929735, -15958686622754240, 164676857033422880 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
LINKS
FORMULA
G.f. A(x) satisfies:
(1) A(x) = ( A(x)^5/(1-x) )^(1/4) - x.
(2) A(x)^5 = (1-x) * (A(x) + x)^4.
(3) A( x*(1+x)^4/(1 + x*(1+x)^4) ) = (1+x)^4/(1 + x*(1+x)^4).
(4) A(x) = x / Series_Reversion( x*(1+x)^4/(1 + x*(1+x)^4) ).
(5) Sum_{k=0..n} [x^k] A(x)^n = (-1)^(n-1) * 4, for n >= 1.
EXAMPLE
G.f.: A(x) = 1 + 3*x - 10*x^2 + 50*x^3 - 345*x^4 + 2681*x^5 - 22416*x^6 + 196700*x^7 - 1786715*x^8 + ...
where A(x)^5 equals (1-x)*(A(x) + x)^4, as can be seen from the following power series expansions:
A(x)^5 = 1 + 15*x + 40*x^2 - 80*x^3 - 20*x^4 + 48*x^5 - 420*x^6 + 8160*x^7 - 109230*x^8 + ...
(A(x) + x)^4 = 1 + 16*x + 56*x^2 - 24*x^3 - 44*x^4 + 4*x^5 - 416*x^6 + 7744*x^7 - 101486*x^8 + ...
Related table.
Another defining property of the g.f. A(x) is illustrated here.
The table of coefficients of x^k in A(x)^n begins:
n=1: [1, 3, -10, 50, -345, 2681, -22416, 196700, ...];
n=2: [1, 6, -11, 40, -290, 2292, -19346, 170784, ...];
n=3: [1, 9, -3, -3, -105, 1083, -10105, 94239, ...];
n=4: [1, 12, 14, -52, 21, 224, -3208, 35792, ...];
n=5: [1, 15, 40, -80, -20, 48, -420, 8160, ...];
n=6: [1, 18, 75, -60, -255, 294, -77, 720, ...];
n=7: [1, 21, 119, 35, -630, 350, 322, -214, ...]; ...
in which the partial sum of row n up to column n equals (-1)^(n-1)*4, as illustrated by:
n=1: 4 = 1 + 3;
n=2: -4 = 1 + 6 + -11;
n=3: 4 = 1 + 9 + -3 + -3;
n=4: -4 = 1 + 12 + 14 + -52 + 21;
n=5: 4 = 1 + 15 + 40 + -80 + -20 + 48;
n=6: -4 = 1 + 18 + 75 + -60 + -255 + 294 + -77;
n=7: 4 = 1 + 21 + 119 + 35 + -630 + 350 + 322 + -214;
...
PROG
(PARI) {a(n) = polcoeff( x/serreverse( x*(1+x)^4/(1 + x*(1+x)^4 +x^2*O(x^n)) ), n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Sequence in context: A209902 A049370 A009343 * A341648 A307099 A048175
KEYWORD
sign
AUTHOR
Paul D. Hanna, Mar 15 2022
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 14 15:00 EDT 2024. Contains 373400 sequences. (Running on oeis4.)