OFFSET
0,4
FORMULA
a(n)=2*sum(k=1..n, sum(j=0..(n-k)/2, binomial(n,n-k-2*j)*(k^(n-k-2*j)*sum(i=0..k/2, (2*i-k)^(k+2*j)*binomial(k,i)*(-1)^(j-i+1))))/(2^k*k)). - Vladimir Kruchinin, Jun 13 2011
Lim sup n->infinity (|a(n)|/n!)^(1/n) = 0.840089206911... = abs(1/r), where r is the complex root of the equation r = log(-1/sin(r)). - Vaclav Kotesovec, Nov 03 2013
MATHEMATICA
With[{nn=30}, CoefficientList[Series[Log[1+Sin[x]Exp[x]], {x, 0, nn}], x] Range[ 0, nn]!] (* Harvey P. Dale, May 06 2013 *)
PROG
(Maxima)
a(n):=2*sum(sum(binomial(n, n-k-2*j)*(k^(n-k-2*j)*sum((2*i-k)^(k+2*j)*binomial(k, i)*(-1)^(j-i+1), i, 0, k/2)), j, 0, (n-k)/2)/(2^k*k), k, 1, n); /* Vladimir Kruchinin, Jun 13 2011 */
CROSSREFS
KEYWORD
sign,easy
AUTHOR
EXTENSIONS
Extended with signs by Olivier Gérard, Mar 15 1997
STATUS
approved