login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A053593
Closed 3-dimensional ball numbers (version 2): a(n)= number of integer points (i,j,k) contained in a closed ball of diameter n, centered at (1/2,0,0).
1
0, 2, 2, 20, 28, 70, 110, 192, 256, 402, 498, 708, 884, 1166, 1422, 1800, 2104, 2594, 3026, 3588, 4140, 4918, 5542, 6432, 7224, 8186, 9122, 10380, 11460, 12790, 14094, 15624, 17080, 18882, 20458, 22500, 24364, 26590, 28678, 31136, 33400
OFFSET
0,2
COMMENTS
a(n)/(n/2)^3->4/3*Pi
LINKS
MAPLE
N:= 100: # to get a(0)..a(N)
B:= Array(0..N^2):
B[0]:= 1:
for x from 1 to N do
for y from 0 to x do
r:= x^2 + y^2;
if r > N^2 then break fi;
if y=0 or y=x then B[r]:= B[r]+4 else B[r]:= B[r]+8 fi
od od:
BL:= convert(B, list):
SL:= ListTools:-PartialSums(BL):
f:= n -> add(SL[floor((n^2+3)/4-x^2+x)], x=ceil(1/2-n/2)..n/2+1/2):
seq(f(n), n=0..N); # Robert Israel, Apr 09 2018
CROSSREFS
Sequence in context: A103129 A322898 A009340 * A002907 A350466 A184717
KEYWORD
easy,nonn
AUTHOR
Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Jan 19 2000
STATUS
approved