This site is supported by donations to The OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A322898 a(n) is the permanent of the matrix [((i + j)/(2*n + 1))]_{i,j=0..n}, where (k/m) denotes the Jacobi symbol. 0
 1, 1, 2, 2, 20, 16, 48, 55, 128, 320, 1206, 768, 406446336, 43545600, 141312, 2267136, 389112, 1624232, 138739712, 122605392, 2262695936, 20313407488, 17060393728, 189261676544, 374345132371011500507136, 669835780976 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Conjecture: a(n) is positive for any nonnegative integer n. LINKS Zhi-Wei Sun, Is the permanent of the matrix [((i+j)/(2n+1))]_{0<=i,j<=n} always positive?, Question 319745, December 30, 2018. EXAMPLE a(1) = 1 since the entries of the matrix A = [Jacobi(i+j,2*1+1)]_{i,j=0,1} are 0, 1 (in the first row) and 1, -1 (in the second row), and per(A) = 0*(-1) + 1*1 = 1. MATHEMATICA Permanent[m_List]:=With[{v = Array[x, Length[m]]}, Coefficient[Times @@ (m.v), Times @@ v]]; a[n_]:=a[n]=Permanent[Table[JacobiSymbol[i+j, 2n+1], {i, 0, n}, {j, 0, n}]]; Do[Print[n, " ", a[n]], {n, 0, 25}] PROG (PARI) a(n) = matpermanent(matrix(n+1, n+1, i, j, i--; j--; kronecker(i+j, 2*n+1))) \\ Michel Marcus, Dec 30 2018 CROSSREFS Cf. A322363. Sequence in context: A093777 A326177 A103129 * A009340 A053593 A002907 Adjacent sequences:  A322895 A322896 A322897 * A322899 A322900 A322901 KEYWORD nonn AUTHOR Zhi-Wei Sun, Dec 30 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 15 20:35 EDT 2019. Contains 327087 sequences. (Running on oeis4.)