OFFSET
0,3
COMMENTS
Conjecture: a(n) is positive for any nonnegative integer n.
This conjecture is false, a(26) < 0. - Vaclav Kotesovec, Aug 20 2021
LINKS
Zhi-Wei Sun, Is the permanent of the matrix [((i+j)/(2n+1))]_{0<=i,j<=n} always positive?, Question 319745, December 30, 2018.
EXAMPLE
a(1) = 1 since the entries of the matrix A = [Jacobi(i+j,2*1+1)]_{i,j=0,1} are 0, 1 (in the first row) and 1, -1 (in the second row), and per(A) = 0*(-1) + 1*1 = 1.
MATHEMATICA
Permanent[m_List]:=With[{v = Array[x, Length[m]]}, Coefficient[Times @@ (m.v), Times @@ v]];
a[n_]:=a[n]=Permanent[Table[JacobiSymbol[i+j, 2n+1], {i, 0, n}, {j, 0, n}]];
Do[Print[n, " ", a[n]], {n, 0, 25}]
PROG
(PARI) a(n) = matpermanent(matrix(n+1, n+1, i, j, i--; j--; kronecker(i+j, 2*n+1))) \\ Michel Marcus, Dec 30 2018
CROSSREFS
KEYWORD
sign
AUTHOR
Zhi-Wei Sun, Dec 30 2018
EXTENSIONS
a(26)-a(34) from Vaclav Kotesovec, Aug 20 2021
STATUS
approved