login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A322895
E.g.f. S(x) = Integral C(x) * C(S(x)) dx, such that C(x)^2 - S(x)^2 = 1, where S(x) = Sum_{n>=0} a(n)*x^(2*n+1)/(2*n+1)!, with coefficients a(n) starting at n = 0.
3
1, 2, 24, 872, 67072, 9174400, 1999010432, 644045742336, 290850932891648, 176867741048885248, 140377061404214788096, 141829845629449484697600, 178724167497716114197741568, 276141744068786710349406863360, 515617816085923457367906068463616, 1149118315292952171200930347988287488, 3023691286171534277132478231960440799232
OFFSET
0,2
LINKS
FORMULA
E.g.f. S(x) and related series C(x) satisfy the following relations.
(1a) S(x) = Integral C(x) * C(S(x)) dx.
(1b) C(x) = 1 + Integral S(x) * C(S(x)) dx.
(2) C(x)^2 - S(x)^2 = 1.
(3a) d/dx S(x) = C(x) * C(S(x)).
(3b) d/dx C(x) = S(x) * C(S(x)).
(4a) C(x) + S(x) = exp( Integral C(S(x)) dx ).
(4b) C(x) = cosh( Integral C(S(x)) dx ).
(4c) S(x) = sinh( Integral C(S(x)) dx ).
(5) C(S(x))^2 - S(S(x))^2 = 1.
(5a) S(S(x)) = Integral C(x) * C(S(x))^2 * C(S(S(x))) dx.
(5b) C(S(x)) = 1 + Integral C(x) * S(S(x)) * C(S(x)) * C(S(S(x))) dx.
(6a) C(S(x)) + S(S(x)) = exp( Integral C(x) * C(S(x)) * C(S(S(x))) dx ).
(6b) C(S(x)) = cosh( Integral C(x) * C(S(x)) * C(S(S(x))) dx ).
(6c) S(S(x)) = sinh( Integral C(x) * C(S(x)) * C(S(S(x))) dx ).
(7) C(S(S(x))) + S(S(S(x))) = exp( Integral C(x) * C(S(x))^2 * C(S(S(x))) * C(S(S(S(x)))) dx ).
EXAMPLE
E.g.f. S(x) = x + 2*x^3/3! + 24*x^5/5! + 872*x^7/7! + 67072*x^9/9! + 9174400*x^11/11! + 1999010432*x^13/13! + 644045742336*x^15/15! + 290850932891648*x^17/17! + ...
such that S(x) = Integral C(x) * C(S(x)) dx.
RELATED SERIES.
C(x) = 1 + x^2/2! + 5*x^4/4! + 109*x^6/6! + 5737*x^8/8! + 579961*x^10/10! + 98213933*x^12/12! + 25474555941*x^14/14! + 9505761607249*x^16/16! + 4872947687449969*x^18/18! + ...
such that C(x)^2 - S(x)^2 = 1.
C(x) + S(x) = 1 + x + x^2/2! + 2*x^3/3! + 5*x^4/4! + 24*x^5/5! + 109*x^6/6! + 872*x^7/7! + 5737*x^8/8! + 67072*x^9/9! + 579961*x^10/10! + 9174400*x^11/11! + 98213933*x^12/12! + 1999010432*x^13/13! + 25474555941*x^14/14! + 644045742336*x^15/15! + 9505761607249*x^16/16! + 290850932891648*x^17/17! + 4872947687449969*x^18/18! + ...
such that C(x) + S(x) = exp( Integral C(S(x)) dx ).
C(S(x)) = 1 + x^2/2! + 13*x^4/4! + 493*x^6/6! + 39929*x^8/8! + 5724249*x^10/10! + 1299323781*x^12/12! + 433635007877*x^14/14! + 201870080039537*x^16/16! + ...
S(S(x)) = x + 4*x^3/3! + 88*x^5/5! + 4992*x^7/7! + 549504*x^9/9! + 101239168*x^11/11! + 28464335360*x^13/13! + 11465663251456*x^15/15! + 6319308066455552*x^17/17! + ...
C(S(x)) + S(S(x)) = 1 + x + x^2/2! + 4*x^3/3! + 13*x^4/4! + 88*x^5/5! + 493*x^6/6! + 4992*x^7/7! + 39929*x^8/8! + 549504*x^9/9! + 5724249*x^10/10! + 101239168*x^11/11! + 1299323781*x^12/12! + 28464335360*x^13/13! + 433635007877*x^14/14! + 11465663251456*x^15/15! + 201870080039537*x^16/16! + 6319308066455552*x^17/17! + ...
such that C(S(x)) + S(S(x)) = exp( Integral C(x) * C(S(x)) * C(S(S(x))) dx ).
If H(H(x)) = S(x) then
H(x) = x + x^3/3! + 7*x^5/5! + 205*x^7/7! + 13305*x^9/9! + 1616133*x^11/11! + 320304759*x^13/13! + 95177183745*x^15/15! + 40025542374641*x^17/17! + 22825140776633385*x^19/19! + 17079280074768716487*x^21/21! + 16337152342909182929909*x^23/23! + 19558206881883825876978857*x^25/25! + 28793090340440086848693036589*x^27/27! + 51357088945721875208166952420407*x^29/29! + ...
the nonzero coefficients of which appear to consist of only odd numbers.
PROG
(PARI) {a(n) = my(S=x, C=1); for(i=1, 2*n,
S = intformal( C * subst(C, x, S) + x*O(x^(2*n)) );
C = 1 + intformal( S * subst(C, x, S) + x*O(x^(2*n)) ); );
(2*n+1)! * polcoeff( S, 2*n+1)}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
Cf. A322896 (C), A322897 (C+S).
Sequence in context: A265879 A339946 A172492 * A264559 A012186 A012081
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 06 2019
STATUS
approved