login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A322896
E.g.f. C(x) = 1 + Integral S(x) * C(S(x)) dx, such that C(x)^2 - S(x)^2 = 1, where C(x) = Sum_{n>=0} a(n)*x^(2*n)/(2*n)!, with coefficients a(n) starting at n = 0.
3
1, 1, 5, 109, 5737, 579961, 98213933, 25474555941, 9505761607249, 4872947687449969, 3312810131306640853, 2904667620898004194909, 3211308227771281024339897, 4393741279202562882120539113, 7323436945446112767673986709757, 14671539180287371238306734615165717, 34918223428517018382160926190235312801
OFFSET
0,3
LINKS
FORMULA
E.g.f. C(x) and related series S(x) satisfy the following relations.
(1a) S(x) = Integral C(x) * C(S(x)) dx.
(1b) C(x) = 1 + Integral S(x) * C(S(x)) dx.
(2) C(x)^2 - S(x)^2 = 1.
(3a) d/dx S(x) = C(x) * C(S(x)).
(3b) d/dx C(x) = S(x) * C(S(x)).
(4a) C(x) + S(x) = exp( Integral C(S(x)) dx ).
(4b) C(x) = cosh( Integral C(S(x)) dx ).
(4c) S(x) = sinh( Integral C(S(x)) dx ).
(5) C(S(x))^2 - S(S(x))^2 = 1.
(5a) S(S(x)) = Integral C(x) * C(S(x))^2 * C(S(S(x))) dx.
(5b) C(S(x)) = 1 + Integral C(x) * S(S(x)) * C(S(x)) * C(S(S(x))) dx.
(6a) C(S(x)) + S(S(x)) = exp( Integral C(x) * C(S(x)) * C(S(S(x))) dx ).
(6b) C(S(x)) = cosh( Integral C(x) * C(S(x)) * C(S(S(x))) dx ).
(6c) S(S(x)) = sinh( Integral C(x) * C(S(x)) * C(S(S(x))) dx ).
(7) C(S(S(x))) + S(S(S(x))) = exp( Integral C(x) * C(S(x))^2 * C(S(S(x))) * C(S(S(S(x)))) dx ).
EXAMPLE
E.g.f. C(x) = 1 + x^2/2! + 5*x^4/4! + 109*x^6/6! + 5737*x^8/8! + 579961*x^10/10! + 98213933*x^12/12! + 25474555941*x^14/14! + 9505761607249*x^16/16! + 4872947687449969*x^18/18! + ...
such that C(x) = Integral S(x) * C(S(x)) dx.
RELATED SERIES.
S(x) = x + 2*x^3/3! + 24*x^5/5! + 872*x^7/7! + 67072*x^9/9! + 9174400*x^11/11! + 1999010432*x^13/13! + 644045742336*x^15/15! + 290850932891648*x^17/17! + ...
such that C(x)^2 - S(x)^2 = 1.
C(x) + S(x) = 1 + x + x^2/2! + 2*x^3/3! + 5*x^4/4! + 24*x^5/5! + 109*x^6/6! + 872*x^7/7! + 5737*x^8/8! + 67072*x^9/9! + 579961*x^10/10! + 9174400*x^11/11! + 98213933*x^12/12! + 1999010432*x^13/13! + 25474555941*x^14/14! + 644045742336*x^15/15! + 9505761607249*x^16/16! + 290850932891648*x^17/17! + 4872947687449969*x^18/18! + ...
such that C(x) + S(x) = exp( Integral C(S(x)) dx ).
C(S(x)) = 1 + x^2/2! + 13*x^4/4! + 493*x^6/6! + 39929*x^8/8! + 5724249*x^10/10! + 1299323781*x^12/12! + 433635007877*x^14/14! + 201870080039537*x^16/16! + ...
S(S(x)) = x + 4*x^3/3! + 88*x^5/5! + 4992*x^7/7! + 549504*x^9/9! + 101239168*x^11/11! + 28464335360*x^13/13! + 11465663251456*x^15/15! + 6319308066455552*x^17/17! + ...
C(S(x)) + S(S(x)) = 1 + x + x^2/2! + 4*x^3/3! + 13*x^4/4! + 88*x^5/5! + 493*x^6/6! + 4992*x^7/7! + 39929*x^8/8! + 549504*x^9/9! + 5724249*x^10/10! + 101239168*x^11/11! + 1299323781*x^12/12! + 28464335360*x^13/13! + 433635007877*x^14/14! + 11465663251456*x^15/15! + 201870080039537*x^16/16! + 6319308066455552*x^17/17! + ...
such that C(S(x)) + S(S(x)) = exp( Integral C(x) * C(S(x)) * C(S(S(x))) dx ).
PROG
(PARI) {a(n) = my(S=x, C=1); for(i=1, 2*n,
S = intformal( C * subst(C, x, S) + x*O(x^(2*n)) );
C = 1 + intformal( S * subst(C, x, S) + x*O(x^(2*n)) ); );
(2*n)! * polcoeff( C, 2*n)}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
Cf. A322895 (S), A322897 (C+S).
Sequence in context: A014180 A012122 A012091 * A296743 A358781 A188457
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 06 2019
STATUS
approved