login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

E.g.f. C(x) = 1 + Integral S(x) * C(S(x)) dx, such that C(x)^2 - S(x)^2 = 1, where C(x) = Sum_{n>=0} a(n)*x^(2*n)/(2*n)!, with coefficients a(n) starting at n = 0.
3

%I #10 Jan 08 2019 20:53:54

%S 1,1,5,109,5737,579961,98213933,25474555941,9505761607249,

%T 4872947687449969,3312810131306640853,2904667620898004194909,

%U 3211308227771281024339897,4393741279202562882120539113,7323436945446112767673986709757,14671539180287371238306734615165717,34918223428517018382160926190235312801

%N E.g.f. C(x) = 1 + Integral S(x) * C(S(x)) dx, such that C(x)^2 - S(x)^2 = 1, where C(x) = Sum_{n>=0} a(n)*x^(2*n)/(2*n)!, with coefficients a(n) starting at n = 0.

%H Paul D. Hanna, <a href="/A322896/b322896.txt">Table of n, a(n) for n = 0..150</a>

%F E.g.f. C(x) and related series S(x) satisfy the following relations.

%F (1a) S(x) = Integral C(x) * C(S(x)) dx.

%F (1b) C(x) = 1 + Integral S(x) * C(S(x)) dx.

%F (2) C(x)^2 - S(x)^2 = 1.

%F (3a) d/dx S(x) = C(x) * C(S(x)).

%F (3b) d/dx C(x) = S(x) * C(S(x)).

%F (4a) C(x) + S(x) = exp( Integral C(S(x)) dx ).

%F (4b) C(x) = cosh( Integral C(S(x)) dx ).

%F (4c) S(x) = sinh( Integral C(S(x)) dx ).

%F (5) C(S(x))^2 - S(S(x))^2 = 1.

%F (5a) S(S(x)) = Integral C(x) * C(S(x))^2 * C(S(S(x))) dx.

%F (5b) C(S(x)) = 1 + Integral C(x) * S(S(x)) * C(S(x)) * C(S(S(x))) dx.

%F (6a) C(S(x)) + S(S(x)) = exp( Integral C(x) * C(S(x)) * C(S(S(x))) dx ).

%F (6b) C(S(x)) = cosh( Integral C(x) * C(S(x)) * C(S(S(x))) dx ).

%F (6c) S(S(x)) = sinh( Integral C(x) * C(S(x)) * C(S(S(x))) dx ).

%F (7) C(S(S(x))) + S(S(S(x))) = exp( Integral C(x) * C(S(x))^2 * C(S(S(x))) * C(S(S(S(x)))) dx ).

%e E.g.f. C(x) = 1 + x^2/2! + 5*x^4/4! + 109*x^6/6! + 5737*x^8/8! + 579961*x^10/10! + 98213933*x^12/12! + 25474555941*x^14/14! + 9505761607249*x^16/16! + 4872947687449969*x^18/18! + ...

%e such that C(x) = Integral S(x) * C(S(x)) dx.

%e RELATED SERIES.

%e S(x) = x + 2*x^3/3! + 24*x^5/5! + 872*x^7/7! + 67072*x^9/9! + 9174400*x^11/11! + 1999010432*x^13/13! + 644045742336*x^15/15! + 290850932891648*x^17/17! + ...

%e such that C(x)^2 - S(x)^2 = 1.

%e C(x) + S(x) = 1 + x + x^2/2! + 2*x^3/3! + 5*x^4/4! + 24*x^5/5! + 109*x^6/6! + 872*x^7/7! + 5737*x^8/8! + 67072*x^9/9! + 579961*x^10/10! + 9174400*x^11/11! + 98213933*x^12/12! + 1999010432*x^13/13! + 25474555941*x^14/14! + 644045742336*x^15/15! + 9505761607249*x^16/16! + 290850932891648*x^17/17! + 4872947687449969*x^18/18! + ...

%e such that C(x) + S(x) = exp( Integral C(S(x)) dx ).

%e C(S(x)) = 1 + x^2/2! + 13*x^4/4! + 493*x^6/6! + 39929*x^8/8! + 5724249*x^10/10! + 1299323781*x^12/12! + 433635007877*x^14/14! + 201870080039537*x^16/16! + ...

%e S(S(x)) = x + 4*x^3/3! + 88*x^5/5! + 4992*x^7/7! + 549504*x^9/9! + 101239168*x^11/11! + 28464335360*x^13/13! + 11465663251456*x^15/15! + 6319308066455552*x^17/17! + ...

%e C(S(x)) + S(S(x)) = 1 + x + x^2/2! + 4*x^3/3! + 13*x^4/4! + 88*x^5/5! + 493*x^6/6! + 4992*x^7/7! + 39929*x^8/8! + 549504*x^9/9! + 5724249*x^10/10! + 101239168*x^11/11! + 1299323781*x^12/12! + 28464335360*x^13/13! + 433635007877*x^14/14! + 11465663251456*x^15/15! + 201870080039537*x^16/16! + 6319308066455552*x^17/17! + ...

%e such that C(S(x)) + S(S(x)) = exp( Integral C(x) * C(S(x)) * C(S(S(x))) dx ).

%o (PARI) {a(n) = my(S=x,C=1); for(i=1,2*n,

%o S = intformal( C * subst(C,x,S) + x*O(x^(2*n)) );

%o C = 1 + intformal( S * subst(C,x,S) + x*O(x^(2*n)) ););

%o (2*n)! * polcoeff( C, 2*n)}

%o for(n=0,20, print1(a(n),", "))

%Y Cf. A322895 (S), A322897 (C+S).

%K nonn

%O 0,3

%A _Paul D. Hanna_, Jan 06 2019