login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A322893
a(n) = [x^(n-1)] Product_{k=1..n} (k + x + 2*k*x^2), for n >= 1.
4
1, 3, 42, 310, 6165, 74991, 1948268, 33402132, 1070751825, 23818189395, 907365113622, 24884202594186, 1097379059482797, 35843982129214455, 1794829778206820280, 68106808437178597960, 3815489686616468849025, 165072679883587905823683, 10226191400763164277215330, 497092886801366317217274750, 33732223801436694239674078341, 1820835126778068312737993859263
OFFSET
1,2
LINKS
FORMULA
a(n) = A322891(n, n-1) for n >= 1.
a(n) = A322891(n, n+1)/2 for n >= 1.
a(n) = n*(n+1)/2 * A322894(n) for n >= 1.
EXAMPLE
The irregular triangle A322891 of coefficients of x^k in Product_{m=1..n} (m + x + 2*m*x^2), for n >= 0, k = 0..2*n, begins
1;
1, 1, 2;
2, 3, 9, 6, 8;
6, 11, 42, 45, 84, 44, 48;
24, 50, 227, 310, 717, 620, 908, 400, 384;
120, 274, 1425, 2277, 6165, 6917, 12330, 9108, 11400, 4384, 3840;
720, 1764, 10264, 18375, 56367, 74991, 154877, 149982, 225468, 147000, 164224, 56448, 46080; ...
Note that this sequence forms a secondary diagonal in the above triangle
[1, 3, 42, 310, 6165, 74991, 1948268, 33402132, 1070751825, ...]
and may be divided by triangular numbers n*(n+1)/2 to obtain A322894:
[1, 1, 7, 31, 411, 3571, 69581, 927837, 23794485, 433057989, ...].
PROG
(PARI) {A322891(n, k) = polcoeff( prod(m=1, n, m + x + 2*m*x^2) +x*O(x^k), k)}
/* Print the irregular triangle */
for(n=0, 10, for(k=0, 2*n, print1( A322891(n, k), ", ")); print(""))
/* Print this sequence */
for(n=1, 30, print1( A322891(n, n-1), ", "))
CROSSREFS
Cf. A322237 (variant).
Sequence in context: A220857 A340613 A157537 * A114943 A119577 A051273
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 29 2018
STATUS
approved