login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A322892
a(n) = [x^n] Product_{k=1..n} (k + x + 2*k*x^2), for n >= 0.
4
1, 1, 9, 45, 717, 6917, 154877, 2254625, 64599201, 1267075953, 44097148953, 1092097482333, 44645622936189, 1338624157833861, 62791851488870493, 2213430779241737793, 117082536584478235713, 4748345510312622896993, 279463602946698380026793, 12824987274099379222626701, 830920299335152521399853101, 42586722790649923167650932101, 3011022417317079016258969826109, 170527854080899363788154404878305
OFFSET
0,3
LINKS
FORMULA
a(n+1) = 4*(n+1) * A322893(n) + a(n), for n >= 1.
a(n+1) = 2*n*(n+1)^2 * A322894(n) + a(n), for n >= 1.
EXAMPLE
The irregular triangle A322891 of coefficients of x^k in Product_{m=1..n} (m + x + 2*m*x^2), for n >= 0, k = 0..2*n, begins
1;
1, 1, 2;
2, 3, 9, 6, 8;
6, 11, 42, 45, 84, 44, 48;
24, 50, 227, 310, 717, 620, 908, 400, 384;
120, 274, 1425, 2277, 6165, 6917, 12330, 9108, 11400, 4384, 3840;
720, 1764, 10264, 18375, 56367, 74991, 154877, 149982, 225468, 147000, 164224, 56448, 46080; ...
in which the main diagonal forms this sequence.
Note that the terms in the secondary diagonal A322893 in the above triangle
[1, 3, 42, 310, 6165, 74991, 1948268, 33402132, 1070751825, ...]
may be divided by triangular numbers n*(n+1)/2 to obtain A322894:
[1, 1, 7, 31, 411, 3571, 69581, 927837, 23794485, 433057989, ...].
PROG
(PARI) {A322891(n, k) = polcoeff( prod(m=1, n, m + x + 2*m*x^2) +x*O(x^k), k)}
/* Print the irregular triangle */
for(n=0, 10, for(k=0, 2*n, print1( A322891(n, k), ", ")); print(""))
/* Print this sequence */
for(n=0, 30, print1( A322891(n, n), ", "))
CROSSREFS
Cf. A322238 (variant).
Sequence in context: A058824 A244302 A177742 * A355175 A352398 A261847
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 29 2018
STATUS
approved