login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A355175 Determinant of the n X n matrix [(i-j)^2 + d(i,j)]_{1<=i,j<=n}, where d(i,j) is 1 or 0 according as i = j or not. 3
1, 0, -9, 45, 931, 6392, 29205, 104497, 315469, 838696, 2018523, 4482765, 9314943, 18301648, 34277321, 61592769, 106738105, 179155504, 292282207, 464869581, 722629755, 1100267400, 1643960605, 2414361521, 3490194501, 4972536856, 6989875075, 9704037421, 13317112215, 18079469856, 24299015697, 32351810305, 42694203377, 55876637664 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

Conjecture: a(n) = (n^2-4)*(n^2+2*n+3)*(n^5-2*n^4-n^3-28*n^2+60*n-90)/1080.

In 2022, Han Wang and Zhi-Wei Sun determined the values of det[i-j+d(i,j)]_{1<=i,j<=n} and det[|i-j|+d(i,j)]_{1<=i,j<=n}, where d(i,j) is 1 or 0 according as i = j or not.

LINKS

Table of n, a(n) for n=1..34.

Han Wang and Zhi-Wei Sun, Evaluations of three determinants, arXiv:2206.12317 [math.NT], 2022.

EXAMPLE

a(3) = -9 since the matrix [(i-j)^2+d(i,j)]_{1<=i,j<=3} = [1,1,4; 1,1,1; 4,1,1] has determinant -9.

MATHEMATICA

a[n_]:=a[n]=Det[Table[If[i==j, 1, (i-j)^2], {i, 1, n}, {j, 1, n}]]

Table[a[n], {n, 1, 34}]

PROG

(Python)

from sympy import Matrix

def A355175(n): return Matrix(n, n, [(i-j)**2 + int(i==j) for i in range(n) for j in range(n)]).det() # Chai Wah Wu, Jun 28 2022

(PARI) a(n) = matdet(matrix(n, n, i, j, if (i==j, 1, (i-j)^2))); \\ Michel Marcus, Jun 29 2022

CROSSREFS

Cf. A000290, A079034.

Sequence in context: A244302 A177742 A322892 * A352398 A261847 A050909

Adjacent sequences:  A355172 A355173 A355174 * A355176 A355177 A355178

KEYWORD

sign

AUTHOR

Zhi-Wei Sun, Jun 28 2022

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 27 22:01 EDT 2022. Contains 357063 sequences. (Running on oeis4.)