OFFSET
1,3
COMMENTS
Conjecture: a(n) = (n^2-4)*(n^2+2*n+3)*(n^5-2*n^4-n^3-28*n^2+60*n-90)/1080.
In 2022, Han Wang and Zhi-Wei Sun determined the values of det[i-j+d(i,j)]_{1<=i,j<=n} and det[|i-j|+d(i,j)]_{1<=i,j<=n}, where d(i,j) is 1 or 0 according as i = j or not.
LINKS
Han Wang and Zhi-Wei Sun, Evaluations of three determinants, arXiv:2206.12317 [math.NT], 2022.
EXAMPLE
a(3) = -9 since the matrix [(i-j)^2+d(i,j)]_{1<=i,j<=3} = [1,1,4; 1,1,1; 4,1,1] has determinant -9.
MATHEMATICA
a[n_]:=a[n]=Det[Table[If[i==j, 1, (i-j)^2], {i, 1, n}, {j, 1, n}]]
Table[a[n], {n, 1, 34}]
PROG
(Python)
from sympy import Matrix
def A355175(n): return Matrix(n, n, [(i-j)**2 + int(i==j) for i in range(n) for j in range(n)]).det() # Chai Wah Wu, Jun 28 2022
(PARI) a(n) = matdet(matrix(n, n, i, j, if (i==j, 1, (i-j)^2))); \\ Michel Marcus, Jun 29 2022
CROSSREFS
KEYWORD
sign
AUTHOR
Zhi-Wei Sun, Jun 28 2022
STATUS
approved