login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A014180
Sum_{k = 0..n} binomial(n,k)^3*binomial(n+k,k)^2.
5
1, 5, 109, 3533, 133501, 5629505, 254899765, 12129399245, 599084606845, 30455459491505, 1584249399505609, 83970120618566825, 4520585403820052581, 246592348286170615097, 13603606921687170927109, 757808346139996787715533, 42575668004558257371188605, 2410024012619343278147357297
OFFSET
0,2
COMMENTS
Compare with the Apéry numbers A005258 and A005259.
FORMULA
a(n) ~ (1+r)^(4*n+5/2)/r^(5*n+9/2)/(4*Pi^2*n^2)*sqrt((1-r)/(5+r)), where r is positive real root of the equation (1-r)^3*(1+r)^2 = r^5, r = 0.65039847669867... - Vaclav Kotesovec, Nov 04 2012
The expansions exp( Sum_{n >= 1} a(n)*x^n/n ) = 1 + 5*x + 67*x^2 + 1471*x^3 + 41456*x^4 + 1380268*x^5 + ... and exp( Sum_{n >= 1} a(n-1)*x^n/n ) = 1 + x + 3*x^2 + 39*x^3 + 924*x^4 + 27696*x^5 + ... appear to have integer coefficients. Cf. A005258 and A005259.- Peter Bala, Jan 14 2016
MATHEMATICA
Table[Sum[Binomial[n, k]^3*Binomial[n+k, k]^2, {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Nov 04 2012 *)
PROG
(PARI) a(n)=sum(k=0, n, binomial(n, k)^3*binomial(n+k, k)^2 ); \\ Joerg Arndt, May 04 2013
KEYWORD
nonn,easy
AUTHOR
STATUS
approved