login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A014180 Sum_{k = 0..n} binomial(n,k)^3*binomial(n+k,k)^2. 5
1, 5, 109, 3533, 133501, 5629505, 254899765, 12129399245, 599084606845, 30455459491505, 1584249399505609, 83970120618566825, 4520585403820052581, 246592348286170615097, 13603606921687170927109, 757808346139996787715533, 42575668004558257371188605, 2410024012619343278147357297 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Compare with the Apéry numbers A005258 and A005259.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..200

V. Kotesovec, Asymptotic of generalized Apery sequences with powers of binomial coefficients, Nov 04 2012

FORMULA

a(n) ~ (1+r)^(4*n+5/2)/r^(5*n+9/2)/(4*Pi^2*n^2)*sqrt((1-r)/(5+r)), where r is positive real root of the equation (1-r)^3*(1+r)^2 = r^5, r = 0.65039847669867... - Vaclav Kotesovec, Nov 04 2012

The expansions exp( Sum_{n >= 1} a(n)*x^n/n ) = 1 + 5*x + 67*x^2 + 1471*x^3 + 41456*x^4 + 1380268*x^5 + ... and exp( Sum_{n >= 1} a(n-1)*x^n/n ) = 1 + x + 3*x^2 + 39*x^3 + 924*x^4 + 27696*x^5 + ... appear to have integer coefficients. Cf. A005258 and A005259.- Peter Bala, Jan 14 2016

MATHEMATICA

Table[Sum[Binomial[n, k]^3*Binomial[n+k, k]^2, {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Nov 04 2012 *)

PROG

(PARI)  a(n)=sum(k=0, n, binomial(n, k)^3*binomial(n+k, k)^2 ); \\ Joerg Arndt, May 04 2013

CROSSREFS

Cf. A218693, A112019, A111968, A014178, A218689, A218692, A005258, A005259.

Sequence in context: A318292 A012239 A012121 * A012122 A012091 A296743

Adjacent sequences:  A014177 A014178 A014179 * A014181 A014182 A014183

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane.

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 16 02:33 EST 2018. Contains 317252 sequences. (Running on oeis4.)