login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A218693
a(n) = Sum_{k=0..n} C(n,k)*C(n+k,k)^3.
5
1, 9, 271, 11193, 535251, 27854739, 1531656211, 87547358649, 5149886133907, 309721191497259, 18957806551405701, 1177134132932168739, 73964787438524189871, 4694347514292389411103, 300499277330710307643771, 19378727805024033594228153, 1257802636907811605342461587
OFFSET
0,2
FORMULA
Recurrence: 4*(n-1)*n^3*(29412*n^4 - 224352*n^3 + 632931*n^2 - 781692*n + 356309)*a(n) = 2*(n-1)*(4176504*n^7 - 38122740*n^6 + 140783586*n^5 - 270139161*n^4 + 288226505*n^3 - 170040251*n^2 + 51625509*n - 6283008)*a(n-1) + 2*(1647072*n^8 - 19152000*n^7 + 94636812*n^6 - 258386460*n^5 + 423728203*n^4 - 423743982*n^3 + 249392728*n^2 - 77793627*n + 9736704)*a(n-2) + 2*(n-2)*(235296*n^7 - 2618352*n^6 + 11905158*n^5 - 28432149*n^4 + 38188669*n^3 - 28610816*n^2 + 10954716*n - 1618272)*a(n-3) - (n-2)*(29412*n^4 - 106704*n^3 + 136347*n^2 - 71238*n + 12608)*(n-3)^3*a(n-4).
a(n) ~ (1+r)^(6*n+7/2)/r^(4*n+7/2)/(4*Pi^(3/2)*n^(3/2))*sqrt((1-r)/(2-r)), where r is positive real root of the equation (1-r)*(1+r)^3=r^4, r = 0.90340819201887...
Generally, Sum_{k=0..n} C(n,k)^p*C(n+k,k)^q is asymptotic to sqrt((r*(1-r^2))/((p+q+(p-q)*r)*(2*Pi*n)^(p+q-1))) * (1+r)^(q*n)/(1-r)^(p*n+p), where r is positive real root of the equation (1-r)^p*(1+r)^q=r^(p+q). - Vaclav Kotesovec, Nov 07 2012
a(n) = hypergeom([-n, n+1, n+1, n+1],[1, 1, 1], -1). - Detlef Meya, May 25 2024
MATHEMATICA
Table[Sum[Binomial[n, k]*Binomial[n+k, k]^3, {k, 0, n}], {n, 0, 20}]
a[n_] := HypergeometricPFQ[{-n, n+1, n+1 , n+1}, {1, 1, 1}, -1]; Table[a[n], {n, 0, 16}] (* Detlef Meya, May 25 2024 *)
CROSSREFS
Cf.
A001850 (p=1, q=1),
A112019 (p=1, q=2),
A005258 (p=2, q=1),
A005259 (p=2, q=2),
A111968 (p=2, q=3),
A014178 (p=3, q=1),
A014180 (p=3, q=2),
A092813 (p=3, q=3),
A218690 (p=4, q=2),
A092814 (p=4, q=4),
A092815 (p=5, q=5),
A218692 (p=6, q=3),
A218689 (p=6, q=6).
Sequence in context: A157571 A202689 A364438 * A258302 A336195 A028456
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Nov 04 2012
STATUS
approved