The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A172492 a(n) = (n!)^2*(n+1)!. 2
 1, 2, 24, 864, 69120, 10368000, 2612736000, 1024192512000, 589934886912000, 477847258398720000, 525631984238592000000, 763217641114435584000000, 1428743424166223413248000000, 3380406941577284595744768000000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Asymptotics: a(n)->(1/16)*Pi^(3/2)*sqrt(2)*(32*n^2+40*n+9)*exp(-3*n)*(n)^(1/2+3*n), n->infinity. LINKS Table of n, a(n) for n=0..13. FORMULA Generating function of hypergeometric type, in Maple notation: sum(a(n)*x^n/(n!)^3, n=0..infinity)=1/(1-x)^2. Integral representation as n-th moment of a positive function on a positive half-axis (solution of the Stieltjes moment problem), in Maple notation: a(n)=int(x^n*MeijerG([[],[]],[[0,0,1],[]],x),x=0..infinity), n=0,1... . The MeijerG function above cannot be represented by any other known special function. This solution of the Stieltjes moment problem is not unique. PROG (Python) from math import factorial def A172492(n): return factorial(n)**3*(n+1) # Chai Wah Wu, Apr 22 2024 CROSSREFS Sequence in context: A099704 A265879 A339946 * A322895 A264559 A012186 Adjacent sequences: A172489 A172490 A172491 * A172493 A172494 A172495 KEYWORD nonn,changed AUTHOR Karol A. Penson, Feb 05 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 22 18:11 EDT 2024. Contains 371906 sequences. (Running on oeis4.)